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A B S T R A C T

The accuracy of graph representation learning is highly dependent on the precise characterization of node
relationships. However, representing the complex and diverse networks in the real world using a single type
of node or link is challenging, often resulting in incomplete information. Moreover, different types of nodes
and links convey rich information, which makes it difficult to design a graph network that can integrate
diverse links. This paper introduces a novel multi-view and multi-layer attention model designed to optimize
node embeddings for semi-supervised node classification. The proposed model exploits various types of inter-
node links and employs the Hilbert–Schmidt independence criterion to maximize the dissimilarity between
distinct node relationships. Furthermore, the multi-layer attention mechanism is used to discern the impact
of different neighboring nodes and relationships between various node relationships. The performance of the
proposed model, MVMA-GCN, was assessed on numerous real-world multi-view datasets. It was observed that
MVMA-GCN consistently outperformed existing models, demonstrating superior accuracy in semi-supervised
classification tasks. We have made our code publicly available at here to ensure the reproducibility of our
results.
. Introduction

Networks are ubiquitous in the real world, such as social networks
nd academic paper collaboration networks. Convolutional Neural Net-
orks (CNNs) have been the preferred choice due to their remarkable
erformance compared to classic handcrafted feature engineering (Pra-
anik et al., 2022a). Originally proposed for document recognition

nd later extended to multiple fields such as image, video, speech, and
udio processing, researchers typically perform deep feature extraction
sing CNNs (Pramanik et al., 2022c). However, the use of CNNs does
ot address every challenge.

Graph structure is naturally suited for representing network struc-
ure, and Graph Neural Networks (GNNs) provide a practical frame-
ork for graph representation learning (Xu et al., 2018). GNNs have
emonstrated impressive performance in many scientific and engi-
eering fields and can uncover underlying relationships among data
Scarselli et al., 2008). For instance, the Graph Convolutional Network
GCN), a neural network specifically designed for non-Euclidean data,
as shown superior performance in areas such as recommendation
ystems for shopping websites (Ying et al., 2018) and social networks
Defferrard et al., 2016; Aburahmah et al., 2016; Li et al., 2022),
rotein structure analysis (Zhang et al., 2018; Gao and Ji, 2019), drug
iscovery (Cheung and Moura, 2020), and pandemic wave prediction
Xue et al., 2022; Pramanik et al., 2022b).

Graph data has a wide range of applications in predicting epidemics,
reventing avoidable deaths, and improving quality of life (Syed et al.,
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2019). However, graph data faces challenges in accurately summarizing
complex relationships in the real world. Graph data based on asso-
ciative relationships in the real world is often noisy, inaccurate, and
incomplete (Tong et al., 2014). Although the success of single-view
data (data with only one type of node relationship) is partially due to
its ease of understanding and model design (Bo et al., 2020), it also
results in information loss in the network (Wang et al., 2021) and weak
performance in message passing effectiveness (Hoang and Maehara,
2019; Wu et al., 2019; Gao et al., 2019). In contrast, multi-view data
(data with multiple types of node relationships) can more accurately
capture the connections between nodes (Fan et al., 2020; Yin et al.,
2020).

For instance, as shown in Fig. 1, when modeling academic paper
collaboration networks, there are three types of relationships between
nodes: co-author, co-conference, and co-keyword. Single-view model-
ing only considers one relationship between nodes, whereas multi-
view modeling needs to fuse different node relationships with accurate
weights.

Due to the complexity of multi-view node relationships, traditional
GNN methods cannot accurately describe multi-view networks. When
designing GNNs with multiple types of node relationships, we need
to address several issues. First, we need modules that can fully cap-
ture multiple relationships between nodes to avoid insufficient node
information captured by the model. Second, few models can adaptively
process multiple node relationships. Third, despite the great success of
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Fig. 1. An illustrative example of a multi-view graph. Figure shows four academic papers consists three types of relationships: co-author, co-conference, and co-keyword.
GNNs in graph analysis, existing works require a way to effectively
combine the strengths of autoencoders and GCNs and incorporate
structural information captured by 𝑘-NN into GCNs.

In response to these challenges, we introduce MVMA-GCN, a novel
approach of multi-view, multi-layer attention graph convolutional net-
work. The fundamental idea of our model is to use multiple type of
links to encapsulate the complex interrelationships between nodes. A
multi-layer attention module that assign different weights to different
nodes, and learn the accurate representation of nodes. Additionally,
we propose an autoencoder module to extract useful representations
from the data and improve classification results. Our work can be
summarized as follows.

• We propose a graph convolution network that can process graph
data containing multiple relational. Our model fully captures
the differences in the multiple relationships between nodes us-
ing the Hilbert–Schmidt independence criterion on various node
relationship graphs.

• We propose a multi-layer attention mechanism that can adap-
tively learn the importance of different neighbor nodes and views.
Specifically, the single-view attention layer aims to learn the
importance between a node and its neighbors, while the multi-
view attention layer can learn the importance of different views.
And then naturally combined with the node’s feature by the
autoencoder module.

• Our extensive experiments on several benchmark datasets show
the superiority of the proposed model, and MVMA-GCN outper-
forms the baseline models. More importantly, by analyzing the
different modules, our model demonstrates its effectiveness on
multiple relationship graphs.

The rest of this article is organized as follows: In Section 2 we
reviewed and analyzed the related work. In Section 3 we formally de-
fined the research problem. In Section 4 we develop MVMA-GCN. The
experimental setup and results of the proposed method are represented
in Section 5. Finally, the conclusions and limitations are discussed in
Section 6.

2. Related work

Our work involved graph embedding, attention mechanism, and
semi-supervised classification. This section reviews the previous re-
search of these three parts and analyzes the advantages and limitations
of the previous research.

2.1. Graph embedding

Graphs are a common way of representing real-world scenarios.
To enable faster computation of graph data, the network structure
2

in the graph must be transformed into vectors, known as graph em-
bedding. Graph embedding can embed network information into low-
dimensional space while preserving the relationships between nodes.
Additionally, graph embedding can apply the learned embedding to
subsequent tasks, thereby improving computational efficiency.

Various methods have been proposed for generating graph embed-
dings. For example, Deepwalk (Perozzi et al., 2014) and node2vec
(Grover and Leskovec, 2016) are based on random walk, while the
SDNE model (Wang et al., 2016) uses a deep neural network to perform
graph embedding and an autoencoder to maintain the proximity of
the first-order and second-order networks. Ref. Wang et al. (2017) is
based on a matrix decomposition approach, while the Line model (Tang
et al., 2015) ensures that the information network retains its first- and
second-order similarity when embedded in a low-dimensional space.

In recent years, deep learning-based graph embedding methods
have gained widespread attention. For example, DNGR (Cao et al.,
2016) integrates random walk and deep autoencoders to generate
probabilistic co-occurrence matrices using a random walk model on the
input graph, which is fed into a superposition denoising autoencoder
to obtain the embedding. However, this method is computationally
expensive for sparse graphs. GCN solves this problem by defining a con-
volution operator on the graph. The model iteratively aggregates the
neighborhood embeddings of nodes and uses the embedding obtained
in the previous iteration and its embedding function to obtain a new
embedding. Many studies based on GCN have been conducted in recent
years (Ma et al., 2019; Qu et al., 2019). For example, GAT (Veličković
et al., 2017) uses an attention mechanism, which uses learned weights
to aggregate node features. GraphSAGE (Hamilton et al., 2017) uses the
mean/max/LSTM pool to sample and aggregate features from the local
neighborhood of nodes.

Previous works have focused on better utilizing graph structure so
that node features can be more efficiently propagated. However, there
is still much potential to be explored in capturing different neighbor
nodes and relationship graphs.

2.2. Attention mechanism

The attention mechanism in neural networks mimics the human
attention mechanism. When humans view a picture, they quickly locate
the area that requires focus and devote more attention to it while
ignoring other information. In an attention network, the output at a
specific moment is determined by the attention it distributes among
multiple inputs, i.e., the weights assigned to each input. A significant
weight indicates that this input contributes more to the output. The
attention mechanism has been successfully used in seq2seq models (Cho
et al., 2014), and its ability to weight different inputs has been shown
to improve model performance.

Various types of attention mechanisms have been proposed, such as

hard attention (Xu et al., 2015), global attention, and local attention
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(Luong et al., 2015). Multi-head attention has also been introduced
to map the node representation into multiple node representations
through a linear mapping, calculate the scaled dot-product attention
separately, and combine the calculation results (Vaswani et al., 2017).
These attention mechanisms have demonstrated significant potential in
various fields and have improved model performance.

Therefore, multi-layer attention is well-suited for fusing different
neighbor nodes and views to describe the predicted node. It can effec-
tively learn the importance of different neighbor nodes and views and
improve the model’s ability to capture relationships between nodes.

2.3. Semi-supervised classification

Semi-supervised learning combines supervised and unsupervised
learning by using labeled and unlabeled data in the training process.
In many applications, a large amount of unlabeled data can be easily
collected, making semi-supervised learning a practical and important
approach. However, labeling data can be labor- and material-intensive.
The key idea behind semi-supervised learning is that better classifica-
tion results can be achieved by leveraging the local features of labeled
data and the larger amount of unlabeled data, as long as the data
distribution is not completely random.

Previous works on semi-supervised learning on graph-structured
data have used both single-view and multi-view inputs. However, using
only a single view may not capture the complex relationships between
nodes as comprehensively as multi-view inputs. Therefore, multi-view
inputs have been shown to produce more accurate classification results.
However, only a few studies have considered the impact of different
neighbor nodes and views on the classification results.

In an effort to address this issue, adaptive multi-channel graph
convolutional networks have been proposed for semi-supervised clas-
sification (Wang et al., 2020). These networks extract specific and
common embeddings from node features and learn adaptive weights
using the attention mechanism. Another approach involves creating
new graph features based on cosine similarity and combining them
with node attributes and graph topologies for graph convolutional
networks (Tang et al., 2021). By considering the impact of different
neighbor nodes and views, these methods have demonstrated improved
classification results in semi-supervised learning on graph-structured
data.

3. Preliminaries

This section introduces some concepts and symbols we used in this
paper.

Definition 1 (Networks, Graphs, Nodes, and Edges). In real-world sce-
arios, there are many entities that are associated with each other
n various ways, forming networks. To represent these relationships
athematically, we can use graphs. In a graph, entities are represented

s nodes, and the associations are represented as edges connecting the
odes. The graph itself is denoted as 𝐺, and the set of nodes is denoted
s 𝑉 , while the set of edges that connect the nodes is denoted as 𝐸.

Definition 2 (Single Type of Link and Multiple Types of Links). In the
study of networks, a single view only captures one type of relation-
ship between nodes, which can lead to loss of important information.
Multi-view, on the other hand, captures various relationships between
nodes, providing a more comprehensive understanding of the network
structure. Mathematically, a multi-view graph is denoted as 𝐺 =
(

𝑉 ,𝐸(1), 𝐸(2),… , 𝐸(𝑚), 𝑋
)

, where 𝑉 =
{

𝑣𝑖
}𝑛
𝑖=1 represents the set of

nodes in the graph, 𝐸(𝑚) represents the set of edges between nodes in
the 𝑚th view, and 𝑋 =

{

𝑥𝑖
}𝑛
𝑖=1 represents the features of the nodes.

The connections between nodes in 𝐺 can be represented by multiple
adjacency matrices

{

𝐴(𝑚)}𝑀
𝑚=1, where 𝑎(𝑚)𝑖,𝑗 = 1 if there is a connection

(𝑚)
between node 𝑖 and node 𝑗 in the 𝑚th view, and 𝑎𝑖,𝑗 = 0 otherwise.

3

However, in our work, we do not consider connections between a node
and itself, so 𝑎(𝑚)𝑖,𝑗 = 0 if 𝑖 = 𝑗.

The relationships between papers in the ACM dataset are rep-
resented using a multi-view model, as shown in Fig. 1. The nodes
represent the papers, and there are three different types of relation-
ships, each represented as a view: co-author (paper–author–paper), co-
conference (paper–conference–paper), and co-keywords (paper–
keyword–paper). The nodes can be connected based on any of these
relationships, and each relationship is considered as a separate view. By
incorporating multiple views, this model can more accurately capture
the relationships between papers and extract more useful information
for subsequent analysis.

Definition 3 (Semi-Supervised Node Classification Based on Multi-View).
In our work, we aimed to use the multiple relationships between nodes
to divide the nodes into 𝐾 predefined different clusters

{

𝐶1, 𝐶2,… , 𝐶𝐾
}

,
to ensure that nodes with similar attributes are close to each other and
nodes with different attributes are far from each other. A small number
of labeled nodes was provided for semi-supervised classification, which
is a common setting in node classification (Wang et al., 2020).

4. MVMA-GCN: The proposed model

The intricate interconnections among entities present a significant
challenge when attempting to encapsulate node structure information
solely via a single view representation of node relationships. Take Fig. 1
for example: a simplistic focus on the co-author relationship between
papers for classification purposes neglects the potential existence of
other relationships, such as co-keyword or co-conference affiliations.
When a multitude of node relationships is employed as input, the
task of assigning weights to these various inputs becomes complex.
The integration process must assure that the model effectively filters
out extraneous noise and selectively extracts the most pertinent node
information from the multiple views. Additionally, it is crucial to
circumvent the risk of model overfitting.

To address these challenges, we introduce the MVMA-GCN model.
The structure of this model is illustrated in Fig. 2. At its core, the
model employs a single-view attention layer to ascertain the signifi-
cance of the relationship between a node and its neighboring nodes,
while a multi-view attention layer is utilized to discern the importance
of different views. This enables the model to precisely learn node
representation. Subsequently, an autoencoder module is utilized to
amalgamate the multiple data structures with the multiple represen-
tations. Detailed explanations of the model’s components are provided
in the four subsequent sections.

(1) Graph Convolutional Network for Multi-View Information Ex-
traction. The proposed model takes as input two parts: node features
and a multi-view consisting of node relationship graphs. The node
features are extracted from the original data and a 𝑘-NN graph is con-
structed based on them. The multi-view ensures that the model can cap-
ture the complex relationships between nodes more comprehensively
and accurately.

(2) Autoencoder for Data Representation. The autoencoder module
are connected to the GCN. Each layer in the autoencoder module inte-
grates the information between the nodes learned in the autoencoder
into the GCN to ensure accurate data representation learning.

(3) Multi-Layer Attention for Multi-View Input. The multi-layer
attention module is designed to discern and assign different weights
across varying nodes and views, which enables the model to adap-
tively learn the importance of different neighbor nodes and views.
The learned node representations are then predicted by a multilayer
perceptron.

(4) Objective Function. To learn the differences between multiple
types of links better, the proposed model uses the Hilbert–Schmidt
independence criterion as the loss function to learn the representa-
tion between different types of links. We use similarity matrix to
learn the similarity representation between different views. Finally, an

autoencoder is added to form the final loss function.
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.1. GCN for multi-view information extraction

A single view can only partially represent the node relationships,
eading to node classification deviations. Some previous works used
ulti-view but only learned each view individually, so they could not

earn the shared representation between views. Our approach involves
dding multi-view convolution to learn the shared parameters of all
iews while using separate single-view convolutions for each view. The
ndependent output of each view and the shared output of multiple
iews are collectively used as the output of this module.
Feature Matrix 𝑋 and Feature Graphs 𝐴𝑘. Initially, we extract

salient information that best represents the node from the original
datasets to serve as the node’s features. For instance, in a paper dataset,
we might use the paper’s keywords, while in a movie dataset, the
movie synopsis could be utilized. Subsequently, these node features are
utilized to construct a node feature matrix, denoted as 𝑋. Here, 𝑥𝑖 ∈ 𝑋
symbolizes the feature vector of the 𝑖th node. This feature matrix 𝑋 is
employed as the initial input to the model.

Following this, the node feature matrix 𝑋 is leveraged to com-
ute the nodes’ similarity matrix, represented as 𝑆. The calculation

methodology harnesses the cosine of the angle between two vectors as
a measure of similarity. Consequently, 𝑆𝑖𝑗 denotes the similarity matrix
of node 𝑖 and node 𝑗, where 𝑥𝑖 and 𝑥𝑗 respectively represent the feature
vectors of nodes 𝑖 and 𝑗.

𝑆𝑖𝑗 =
𝑥𝑖 ⋅ 𝑥𝑗

|𝑥𝑖| ⋅ |𝑥𝑗 |
. (1)

Lastly, we determine the existence of connections between nodes by
calculating the similarity between them. Based on the node features,
we construct a 𝑘-nearest neighbor graph and represent it as the feature
graph 𝐴𝑘. This graph is used as the second input to the model, allowing
it to capture the structural information of the relationships between the
nodes.

Node Relationship Graphs
{

𝐴𝑚
}𝑀
𝑚=1. The proposed model takes into

account the multi-view relationship graphs constructed based on nodes’
relationships, in addition to the feature matrix and feature graph based
on node features. The multi-view relationship graphs are represented as
{

𝐴𝑚
}𝑀
𝑚=1, where 𝑀 is the number of views. For instance, in the DBLP

dataset, there are three relationships between nodes, so 𝑀 = 3. If nodes
𝑖 and 𝑗 are connected in a particular view, then the corresponding value
 t

4

in the adjacency matrix is 1, and 0 otherwise. Self-connections are not
considered. These relationship graphs are used as the third input to the
model, enabling it to capture the complex relationships between nodes
from different perspectives.

Single-View Convolution 𝑍𝑘 and 𝑍𝑚. We use
(

𝐴𝑘, 𝑋
)

and
(

𝐴𝑚, 𝑋
)

s inputs to single-view convolution. Each of the inputs is passed
hrough a separate convolution module, which produces two outputs,
𝑘 and 𝑍𝑚. The 𝑙th layer of the convolution can be represented as

ollows:
(𝑙)
𝑘 = 𝑅𝑒𝐿𝑈

(

�̃�− 1
2 �̃�𝑘�̃�

− 1
2 𝑍𝑘

(𝑙−1)𝑊 (𝑙)
)

, (2)

(𝑙)
𝑚 = 𝑅𝑒𝐿𝑈

(

�̃�− 1
2 �̃�𝑚�̃�

− 1
2 𝑍𝑚

(𝑙−1)𝑊 (𝑙)
)

, (3)

in this context, 𝑊 (𝑙) represents the weight matrix associated with the
𝑙th layer of the Graph Convolutional Network (GCN). The preliminary
𝑍𝑚 is defined as 𝑍(0)

𝑚 = 𝑋𝑚(𝑎𝑡𝑡), where 𝑋𝑚(𝑎𝑡𝑡) refers to the node embed-
ing that is learned via the single-view attention network, specifically
ithin view 𝑚, the details are described in Section 4.3. The initial 𝑍𝑘

s denoted as 𝑍(0)
𝑘 = 𝑋. The augmented adjacency matrices, �̃�𝑘 and �̃�𝑚,

are defined as 𝐴𝑘+𝐼 and 𝐴𝑚+𝐼 , respectively. Additionally, �̃� represents
the diagonal matrix corresponding to 𝐴.

Multi-View Convolution 𝑍𝑐 . Learning each view in isolation often
proves insufficient for identifying commonalities between different
views. Thus, we incorporate multi-view convolution to extract the
shared information across various views. All previous inputs are uti-
lized as inputs for the multi-view convolution. The resultant output
from the multi-view convolution module is denoted as 𝑍𝑐 , and the
output from the 𝑙th layer of the convolution can be formulated as:

𝑍(𝑙)
𝑐 = 𝑅𝑒𝐿𝑈

(

�̃�− 1
2 𝐴𝑐�̃�

− 1
2 𝑍(𝑙−1)𝑊 (𝑙)

)

, (4)

ere, 𝑊 (𝑙) signifies the weight matrix of the 𝑙th layer of the GCN. The
nitial 𝑍 is defined as 𝑍(0) = 𝑋. The augmented adjacency matrix �̃� is
omputed as 𝐴𝑐 + 𝐼 , where 𝐴𝑐 is the sum of 𝐴𝑘 and the set

{

𝐴𝑚
}𝑀
𝑚=1.

Furthermore, �̃� represents the diagonal matrix corresponding to 𝐴.

.2. Autoencoder for data representation

Effective data representation learning is critical for classification

asks. As such, we implement an autoencoder to comprehend the raw
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data representations. This approach allows for the accommodation of
diverse data characteristics and the subsequent transmission of the
acquired knowledge to the pertinent GCN layer.

Use Autoencoder to Extract Node Representation 𝐻 . Firstly, if we
assume that the autoencoder comprises 𝐿 layers, then the expression
acquired in the 𝑙th layer within the autoencoder is denoted as 𝐻 (𝑙)

𝑒 :

𝐻 (𝑙)
𝑒 = 𝑅𝑒𝐿𝑈

(

𝑊 (𝑙)
𝑒 𝐻 (𝑙−1)

𝑒 + 𝑏(𝑙)𝑒
)

, (5)

in this equation, 𝑅𝑒𝐿𝑈 serves as the activation function for the fully
connected layer, while 𝑊 (𝑙)

𝑒 and 𝑏(𝑙)𝑒 respectively represent the weight
matrix and bias of the 𝑙th layer in the autoencoder. Furthermore, 𝐻 (0)

𝑒
is defined as the feature matrix 𝑋.

The encoder part’s outcome is 𝐻 (𝑙)
𝑒 . Then, we use the decoder part

to restore the node representation 𝐻 (𝑙)
𝑑 ; the representation learned at

layer 𝑙 in the autodecoder is:

𝐻 (𝑙)
𝑑 = 𝑅𝑒𝐿𝑈

(

𝑊 (𝑙)
𝑑 𝐻 (𝑙−1)

𝑑 + 𝑏(𝑙)𝑑
)

. (6)

Passing the Node Representation into the GCN Module. Initially,
the node representations obtained from the autoencoder, such as 𝐻 (1)

𝑒 ,
𝐻 (2)

𝑒 , . . . , and 𝐻 (𝐿)
𝑒 , are fed into the GCN module. This allows the GCN

to encapsulate two distinct kinds of information: the data itself and the
structure of the data. For instance, the output from the 𝑙th layer, as
learned within a single view, can be represented as 𝑍(𝑙)

𝑘 .

Subsequently, given that the representation 𝐻 (𝑙)
𝑒 , as learned by

the autoencoder, can reconstruct the data and contains various valu-
able information, merging the two representations facilitates a more
comprehensive representation:

�̃�(𝑙−1)
𝑘 = (1 − 𝜖)𝑍(𝑙−1)

𝑘 + 𝜖𝐻 (𝑙−1)
𝑒 , (7)

here, 𝜖 is a hyperparameter with an initial value set to 0.5 (ranging
from 0 to 1). It should be noted that we employ 𝑍(𝑙)

𝑘 in conjunction
with the encoder feature 𝐻 (𝑙−1)

𝑒 , as opposed to the decoder feature
𝐻 (𝑙−1)

𝑑 . This is because our goal is to maximize the similarity between
𝐻𝑒 and 𝐻𝑑 through the reconstruction process, ensuring that 𝐻𝑒 can
more accurately represent the structural information of the original
data. As such, the autoencoder and GCN can be interconnected on a
layer-by-layer basis.

4.3. Multi-layer attention for multi-view input

The multi-layer attention module operates in three distinct stages:
Initially, the module employs the single-view attention layer to as-
certain the impact of various neighboring nodes. Subsequently, the
multi-view attention layer is harnessed to understand the influence
of different views. Finally, these two components are amalgamated to
derive the anticipated representation of the nodes.

Single-View Attention Layer. In contrast to prior methods, it is
crucial to acknowledge that each node’s neighbors exert distinct influ-
ences, and features are derived from a variety of perspectives through
different relationships. Prior to calculating the effect of different views
on the prediction outcomes, it is necessary to compute the influence
between nodes within the same view. Given that each node plays a
unique role in the node embedding process, they each have a disparate
impact on the final result. The single-view attention layer can learn
the influence of various neighbor nodes on the predicted nodes within
each view. Initially, self-attention (Vaswani et al., 2017) is employed
to ascertain the weights between different node. For instance, in a view
𝑚, for a given node pair (𝑖, 𝑗), the significance of node 𝑗 to node 𝑖 can
be calculated as:

𝛼𝑚(𝑖, 𝑗) =
exp

(

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈
(

𝑎𝑇𝑚 ⋅
[

𝑥𝑖 ∥ 𝑥𝑗
]))

∑

𝑘∈𝑁 exp
(

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈
(

𝑎𝑇𝑚 ⋅
[

𝑥𝑖 ∥ 𝑥𝑘
])) , (8)

ere, ∥ denotes the concatenation operation; 𝑥𝑖, 𝑥𝑗 , and 𝑥𝑘 are the node
eatures of nodes 𝑖, 𝑗, and 𝑘, respectively; and in the single view 𝑚, 𝑎𝑇𝑚
s the attention vector.
 𝐿

5

Next, the node embedding of node 𝑖 in the view can be achieved by
ggregating the neighbor nodes’ features with feature coefficients. To
nhance the stability of the training process, we utilize multi-headed
ttention. Specifically, the single-view attention layer is repeated 𝐾

times, and the acquired embedding is connected to the embedding of
a specific view. Finally, the learned node embedding and the node
feature matrix are concatenated to yield 𝑋𝑚(𝑎𝑡𝑡), where 𝑧𝑚(𝑖) represents
the embedding of node 𝑖 as learned in view 𝑚.

𝑧𝑚(𝑖) =∥𝐾𝑘=1 𝑆𝑖𝑔𝑚𝑜𝑖𝑑

(

∑

𝑗∈𝑁
𝛼𝑚(𝑖, 𝑗) ⋅ 𝑥𝑗

)

. (9)

Multi-View Attention Layer. In order to learn node embeddings
effectively, it is crucial to amalgamate multiple node embeddings ac-
quired from different views. Given that weights assigned between
various views differ across nodes or datasets, there is a need for a
module capable of automatically assigning weights to different views
in order to address this challenge.

First, the output from the preceding stage is utilized as input for
this step, which entails using the single-view graph convolution 𝑍𝑘 and
{

𝑍𝑚
}𝑀
𝑚=1 alongside the multi-view convolution 𝑍𝑐 . For node 𝑖, a non-

linear transformation is performed on the node embedding, followed
by employing the shared attention vector 𝑞 to compute the attention
value 𝜔𝑖:

𝜔𝑖 = 𝑞𝑇 ⋅ tanh
(

𝑊 ⋅
(

𝑧𝑖
)𝑇 + 𝑏

)

, (10)

here, 𝑊 represents the weight matrix, and 𝑏 denotes the bias. The
attention value of node 𝑖 in other embedding matrices can be obtained
through a similar approach, with 𝑞 serving as the attention vector
employed to gauge the significance of node embedding 𝑧𝑖.

Then, a function is employed to normalize multiple attention values,
thereby determining the final weight:

𝛼𝑖𝑘 =
exp

(

𝜔𝑖
𝑘
)

exp
(

𝜔𝑖
𝑘
)

+ exp
(

𝜔𝑖
𝑚
)

+ exp
(

𝜔𝑖
𝑐
) , (11)

a larger 𝛼 suggests that the embedding holds greater importance. The
same process can be applied to calculate 𝛼𝑖𝑚 and 𝛼𝑖𝑐 .

Lastly, the three embeddings are combined to yield the final embed-
ding. A higher 𝛼𝑖 value indicates a more crucial view.

𝑍 = 𝛼𝑘 ⋅𝑍𝑘 + 𝛼𝑚 ⋅𝑍𝑚 + 𝛼𝑐 ⋅𝑍𝑐 . (12)

4.4. Objective function

In order to achieve high classification accuracy, we use the single-
view loss function 𝐿𝑠, multi-view loss function 𝐿𝑚, reconstruction loss
function 𝐿𝑟𝑒𝑠, and cross-entropy loss 𝐿𝑡.

Single-View Loss Function 𝐿𝑠. In the single-view and multi-view
convolution parts, since the input is the same, they are both 𝑘-NN
graphs and have a specific relationship graph. To allow our model to
capture richer information, we try to let our model learn different node
representations. In other words, the goal is to amplify the differences
among 𝑍𝑘, 𝑍𝑚, and 𝑍𝑐 . To quantify the independence between these
diverse outputs, we adopt the Hilbert–Schmidt Independence Criterion
(HSIC) (Wang et al., 2020).

𝐻𝑆𝐼𝐶
(

𝑍1, 𝑍2
)

= (𝑛 − 1)−2𝑡𝑟
(

𝑅𝐾1𝑅𝐾2
)

, (13)

here, 𝐾1𝐾2 represents the Gram matrix; 𝑘1,𝑖𝑗 is equivalent to 𝑘1
(

𝑧𝑖1, 𝑧
𝑗
1

)

,

and similarly, 𝑘2,𝑖𝑗 corresponds to 𝑘2
(

𝑧𝑖2, 𝑧
𝑗
2

)

. The term 𝑅 is given by
𝐼 − 1

𝑛 𝑒𝑒
𝑇 , where 𝐼 denotes the identity matrix and 𝑒 is a column vector

ntirely composed of ones. The inner product kernel function is utilized
or the computation of 𝐾1𝐾2.

𝐻𝑆𝐼𝐶 also calculates all other views; the single-view loss function
et as:

( ̃ ) ( ̃ ) ( )

(14)
𝑠 = 𝐻𝑆𝐼𝐶 𝑍𝑘, 𝑍𝑚 +𝐻𝑆𝐼𝐶 𝑍𝑘, 𝑍𝑐 +𝐻𝑆𝐼𝐶 𝑍𝑚, 𝑍𝑐 .



P. Zhang, Y. Zhang, J. Wang et al. Engineering Applications of Artificial Intelligence 126 (2023) 106717

w
b

a
c
r
o

𝑌

S
l
a

𝐿

f

𝐿

w
l
o
f

5

i
s
M
w
e

5

T
N

Multi-View Loss Function 𝐿𝑚. In the case of the multi-view loss
function, our objective is to enhance the consistency across various
views via convolution. Initially, the model employs 𝐿2 normalization
to standardize the matrices {𝑍} 𝑖 = 1𝑀 , yielding {𝑍nor } 𝑖 = 1𝑀 . Fol-
lowing this, we use these two normalized matrices to ascertain the
similarity between nodes, denoted by {𝑆𝑖}𝑀𝑖=1:
{

𝑆𝑖
}𝑀
𝑖=1 = 𝑍nor ⋅𝑍𝑇

nor . (15)

Because we want the two similarity matrices to be as similar as
possible, the loss function is:

𝐿𝑚 = ‖

‖

𝑆𝑘 − 𝑆𝑚
‖

‖

2
𝐹 + ‖

‖

𝑆𝑘 − 𝑆𝑐
‖

‖

2
𝐹 + ‖

‖

𝑆𝑐 − 𝑆𝑚
‖

‖

2
𝐹 . (16)

Reconstruction Loss Function 𝐿𝑟𝑒𝑠. Given that the output of the
decoder reconstructs the original data, we can derive the following
objective function:

𝐿𝑟𝑒𝑠 =
1
2𝑁

‖

‖

‖

𝑋𝑖 − �̂�𝑖
‖

‖

‖

2

𝐹
, (17)

here 𝑋𝑖 is the node feature matrix, �̂� is the feature matrix restored
y the automatic decoder, that is, 𝐻 𝑙

𝑑 in Eq. (6).
Optimization Objective. Embed the model 𝑍 output into Eq. (14),

nd use the softmax function for semi-supervised multi-class classifi-
ation. Denote the class prediction of 𝑛 nodes as 𝑌 = [𝑦𝑖𝑐 ], where 𝑦𝑖𝑐
epresents the probability that the node belongs to class 𝑐. The formula
f 𝑌 is:

̂ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 ⋅𝑍 + 𝑏), (18)

uppose the training set is 𝐿, the node’s label is 𝑌𝑖, and the predicted
abel is 𝑌𝑖. Then, calculate the cross-entropy loss of all training nodes
s:

𝑡 = −
∑

𝑙∈𝐿

𝐶
∑

𝑖=1
𝑌𝑙𝑖 ln 𝑌𝑙𝑖. (19)

Combining the node classification task and constraints, the final loss
unction is 𝐿:

= 𝐿𝑡 + 𝑎𝐿𝑚 + 𝑏𝐿𝑠 + 𝑐𝐿𝑟𝑒𝑠. (20)

here 𝑎, 𝑏, and 𝑐 are the parameters of the multi-view module, multi-
ayer attention module, and autoencoder module, respectively. We can
ptimize the model by backpropagation and learn the node embedding
or node classification.

. Experimental results and analysis

In this section, we assess our model’s performance by comparing
t to state-of-the-art baseline models. All models were run using the
ame parameters for ten trials, and the average results were recorded.
odel performance was evaluated based on accuracy and F1 scores,
ith higher values indicating better classification performance. The
xperiments were carried out under the following conditions:

∙ Operating system: Windows 10 64-bit 20H2.
∙ CPU: AMD Ryzen 7 5800X.
∙ GPU: NVIDIA GeForce RTX 3090.
∙ Software versions: Python 3.7.9; Pytorch 1.8.1; Numpy 1.19.2;

SciPy 1.5.2; NetworkX 2.5; scikit-learn 0.23.2.
∙ Training: 6 h to train our model for 30–300 epochs with the

learning rate of 1e-04 to 1e-03 and the batch size of 64.

.1. Datasets

The MVMA model has been validated on several real-world datasets.
he details of the datasets are summarized in Table 1.
6

∙ ACM1: The data is sourced from the ACM database, where each
node corresponds to a research paper, with features extracted
from the paper’s keywords (bag-of-words). The labels denote the
paper’s academic field: Database, Wireless Communication, or
Data Mining. The dataset comprises three types of node relation-
ships: co-authorship, co-conference, and co-keyword usage.

∙ DBLP2: This data comes from the DBLP database. Here, nodes
represent authors, with features generated from the keywords
used by each author. Node labels indicate the author’s area of re-
search: Database, Data Mining, Machine Learning, or Information
Retrieval. There are three types of relationships between nodes:
co-publishing, co-conference, and co-keyword usage.

∙ IMDB3: Data is extracted from the IMDB website. In this case,
nodes represent movies, with features derived from keywords in
the movie’s plot summary. Node labels indicate the movie’s genre:
Action, Comedy, or Drama. Three types of relationships between
nodes are defined: co-actor, co-director, and co-release year.

∙ BlogCatalog4: This data was sourced from the BlogCatalog web-
site, a social networking site encompassing bloggers and their
interconnected relationships. In this context, a node symbolizes
a user, and the features of the node are constructed from the
keywords within the user profiles. The node label corresponds to
one of the six topic categories provided by the authors.

∙ Flickr5: This data was derived from an image and video hosting
platform, where users interact through the sharing of photos. A
node in this instance represents a user. Node labels correspond to
the users’ interest groups.

∙ CoraFull6: This is a larger version of the well-recognized Cora
citation network dataset. Here, a node represents a scientific
paper, and the node features are constructed using a bag-of-words
approach from paper keywords. Node labels are categorized based
on paper topics.

∙ Chameleon7: This dataset, sourced from Wikipedia, contains two
page-page networks. Nodes represent web pages, and edges sym-
bolize hyperlinks between these pages. Each node possesses a
feature set that corresponds to the informative nouns on the page.
The node label indicates the monthly traffic of the respective
page.

∙ Pubmed8: This dataset comprises scientific papers. Each paper is
depicted as a node in the network, and citation relationships be-
tween papers are represented as edges. The labels for each paper
are associated with distinct academic fields, and the node features
are represented using a bag-of-words approach, encapsulating the
content of the papers.

5.2. Baselines

To ascertain the efficacy of our MVMA-GCN model, we set it up
against several cutting-edge baseline models. Further, we assessed three
distinct variants of MVMA-GCN to confirm the utility of the multi-
view and multi-layer attention mechanisms, as well as the autoencoder
modules. These comparative evaluations provide a comprehensive un-
derstanding of the relative strengths of our proposed model.

1 https://dl.acm.org/.
2 https://dblp.uni-trier.de/.
3 https://www.imdb.com/.
4 https://github.com/mengzaiqiao/CAN.
5 https://github.com/mengzaiqiao/CAN.
6 https://github.com/abojchevski/graph2gauss/.
7 https://github.com/BUPT-GAMMA/Graph-Structure-Estimation-Neural-

etworks.
8
 https://linqs.org/datasets/.

https://dl.acm.org/
https://dblp.uni-trier.de/
https://www.imdb.com/
https://github.com/mengzaiqiao/CAN
https://github.com/mengzaiqiao/CAN
https://github.com/abojchevski/graph2gauss/
https://github.com/BUPT-GAMMA/Graph-Structure-Estimation-Neural-Networks
https://github.com/BUPT-GAMMA/Graph-Structure-Estimation-Neural-Networks
https://linqs.org/datasets/
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Table 1
The detailed descriptions of the datasets.

Dataset # Nodes # Edges # Classes # Features

ACM 3025 13 128/1 103 870/1 109 339 3 1870
DBLP 4057 3530/2 498 221/3 386 141 4 334
IMDB 4780 46 617/8121/809 074 3 1732
BlogCatalog 5196 171 743/65 713/97 514 6 8189
Flickr 7575 239 738/64 284/54 135 9 12 047
CoraFull 19 793 65 311/9751/5732 70 8710
Chameleon 2277 15 101/14 685/6315 5 2325
Pubmed 19 717 22 338/10 573/11 427 3 500

∙ Deepwalk9: This graph-embedding method utilizes depth-first
random walks to acquire contextual information and employs the
skip-gram algorithm to learn network representations.

∙ LINE10: A graph-embedding approach that leverages breadth-first
random walks to gather contextual information, and learns net-
work representations through first- and second-order similarity.

∙ GCN11: A semi-supervised graph convolutional network model
that learns node features by aggregating neighbor information.
This model’s motivation for the convolutional architecture stems
from a localized first-order approximation of spectral graph con-
volutions.

∙ 𝑘NN-GCN: In this variation, we used a sparse 𝑘-nearest neighbor
graph computed from the feature matrix as the input graph for
GCN, instead of the conventional topology graph.

∙ GAT12: A semi-supervised graph convolutional network model
that incorporates the attention mechanism to aggregate node fea-
tures. Stacking layers in which nodes can attend over their neigh-
borhoods’ features allows the model to assign different weights
to distinct nodes without necessitating costly matrix operations
or prior knowledge of the graph structure.

∙ DEMO-Net13: A degree-specific graph neural network for node
classification. This model introduces a novel graph-level pool-
ing/readout scheme for learning graph representations, which lies
provably within a degree-specific Hilbert kernel space.

∙ MixHop14: A GCN-based method that integrates feature represen-
tations of higher-order neighbors into a single graph convolu-
tion layer. The model is capable of learning a general class of
neighborhood mixing relationships, including difference opera-
tors, by continuously mixing feature representations of neighbors
at varying distances.

∙ AM-GCN15: AM-GCN is an innovative model designed for effi-
cient node classification and representation learning in graph-
structured data. By incorporating attention mechanisms and
leveraging information from multiple views, AMGCN effectively
captures both node features and the underlying graph structure.

∙ MVMA𝑆𝑉 : A variant of MVMA-GCN where the multi-view module
is deleted; we only used single view as the input.

∙ MVMA𝑆𝐴: A variant of MVMA-GCN where the multi-layer atten-
tion module is deleted, and only a single layer of attention is
retained.

∙ MVMA𝐸𝑁 : A variant of MVMA-GCN where the autoencoder mod-
ule is deleted.

∙ MVMA-GCN: The proposed semi-supervised graph convolutional
network includes a multi-view module, a multi-layer attention
module, and an autoencoder module.

9 https://github.com/phanein/deepwalk.
10 https://github.com/tangjianpku/LINE.
11 https://github.com/tkipf/pygcn.
12 https://github.com/Diego999/pyGAT/.
13 https://github.com/jwu4sml/DEMO-Net.
14 https://github.com/benedekrozemberczki/MixHop-and-N-GCN.
15 https://github.com/zhumeiqiBUPT/AM-GCN.
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Table 2
Model hyperparameters for the reproducibility of our proposed model.

Dataset Dropout lr Epoch𝑚𝑎𝑥 k

ACM 0.07 0.0005 30 7
DBLP 0.06 0.0005 30 8
IMDB 0.07 0.0005 30 6
BlogCatalog 0.06 0.0002 55 7
Flickr 0.07 0.0003 60 8
CoraFull 0.08 0.001 300 7
Chameleon 0.05 0.001 60 5
Pubmed 0.05 0.001 60 5

5.3. Parameters setting

To undertake a thorough assessment of the MVMA-GCN model, we
initialized the parameters randomly and employed Adam optimization.
Training sets were established with three different label rates, entailing
20, 40, and 60 labeled nodes for each respective category. For the
sake of consistency, all baseline comparisons were initialized using
parameters recommended in their original publications.

For our model, we allocated 768 and 512 dimensions respectively
to each GCN’s hidden layer. A comprehensive summary of the model’s
hyperparameters is provided in Table 2. This meticulous setup ensures
a rigorous and fair evaluation of our model’s performance against the
state-of-the-art alternatives. Our code is based on the AM-GCN.16

5.4. Node classification

The node classification results are shown in Table 3, which contains
the node classification results for the three datasets. In the table, L/C
indicates the number of nodes with labels in each class.

For each evaluation metric, MVMA achieved the best results in
almost all datasets. In particular, for accuracy, the model achieved a
significant improvement of 2.5% and 2% for the classification task on
ACM and DBLP, respectively. In F1 scores, MVMA achieved an average
improvement of 1.5%. This means MVMA-GCN, unlike MixHop or AM-
GCN, successfully merged the information between the nodes contained
in multi-view.

The model performed better than GCN and GAT on all datasets,
which shows that the multi-view fusion mechanism is effective. We
observed that our model results are better than the most robust baseline
AM-GCN (usually a 2% improvement), which verifies that our model
can more accurately capture the relationship between nodes. Addi-
tionally, our model uses a multi-layer attention mechanism to reveal
the hidden associations between nodes, which provides more accurate
training guidance for node classification.

The node classification results of the variants are shown in Table 4.
MVMA𝑆𝐴 only uses a single layer of attention, which cannot assign the
best weights to different nodes and views. So, MVMA usually achieved
better node classification results than MVMA𝑆𝐴. MVMA achieved much
better results in the IMDB dataset than MVMA𝑆𝐴. Many movies are
usually not related in the IMDB dataset except for the release year,
which causes large amounts of noise in the co-year view. However, the
co-year view cannot be removed because the release year can be used to
understand the audience’s preferences and the trend in movies, which
also reflects the importance of multi-layered attention.

MVMA achieved more accurate node classification results than
MVMA𝐸𝑁 . Compared with MVMA𝐸𝑁 , which does not use the autoen-
coder module, MVMA relies on the structural information between
the data to learn the representation of nodes and the representation
between the data through the 𝑘NN graph. Therefore, MVMA𝐸𝑁 per-
formance decreases when the data structure is unclear or has errors.
In addition, the autoencoder can overcome the problem due to GCN’s
limited ability to learn structured information, thus improving the node
classification results.

16 https://github.com/zhumeiqiBUPT/AM-GCN.

https://github.com/phanein/deepwalk
https://github.com/tangjianpku/LINE
https://github.com/tkipf/pygcn
https://github.com/Diego999/pyGAT/
https://github.com/jwu4sml/DEMO-Net
https://github.com/benedekrozemberczki/MixHop-and-N-GCN
https://github.com/zhumeiqiBUPT/AM-GCN
https://github.com/zhumeiqiBUPT/AM-GCN
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Table 3
Node classification results on different baselines.(%) (bold = best).

Dataset Metrics L/C DeepWalk LINE GCN 𝑘NN-GCN GAT DEMO-Net MixHop AM-GCN MVMA-GCN

ACM

ACC
20 62.69 41.28 87.80 78.52 87.36 84.48 81.08 90.40 92.74
40 63.00 45.83 81.64 89.06 88.60 85.70 82.34 90.76 92.83
60 67.03 50.41 85.43 90.54 90.40 86.55 83.09 91.42 93.75

F1
20 62.11 40.12 87.82 78.14 87.44 84.16 81.40 90.43 92.62
40 61.88 45.79 89.00 81.53 88.55 84.83 81.13 90.66 92.75
60 66.99 49.92 90.49 81.95 90.39 84.05 82.24 91.36 93.66

DBLP

ACC
20 79.37 86.89 90.71 90.42 89.96 90.16 90.64 90.91 92.33
40 82.73 86.94 91.01 91.37 90.14 90.82 91.04 91.32 92.54
60 83.89 87.25 91.62 91.46 90.84 91.32 91.44 91.72 92.82

F1
20 77.43 85.46 90.79 90.61 89.97 90.53 90.73 91.02 91.17
40 81.02 85.57 91.48 91.07 90.20 91.03 91.07 91.56 91.59
60 83.46 87.21 91.89 91.81 90.80 91.48 91.39 91.78 92.43

IMDB

ACC
20 40.72 42.68 49.78 50.24 55.28 41.16 55.10 58.35 59.50
40 45.19 43.69 51.71 50.44 55.91 44.22 55.94 59.56 60.42
60 48.13 47.19 52.29 51.79 56.44 45.11 56.68 59.80 60.65

F1
20 46.38 29.86 45.73 46.79 49.44 45.65 55.28 50.29 51.54
40 49.99 30.35 48.01 48.96 50.64 48.24 55.47 51.44 52.90
60 50.70 30.75 49.15 49.62 51.90 49.09 55.64 53.75 54.23

BlogCatalog

ACC
20 38.67 58.75 69.84 75.49 64.08 54.19 65.46 81.98 82.03
40 50.80 61.12 71.28 80.84 67.40 63.47 71.66 84.94 85.26
60 55.02 64.53 72.66 82.46 69.95 76.81 77.44 87.30 88.09

F1
20 34.96 57.75 68.73 72.53 63.38 52.79 64.89 81.36 82.55
40 48.61 60.72 70.71 80.16 66.39 63.09 70.84 84.32 85.14
60 53.56 63.81 71.80 81.90 69.08 76.73 76.38 86.94 89.03

Flickr

ACC
20 24.33 33.25 41.42 69.28 38.52 34.89 39.56 75.26 75.69
40 28.79 37.67 45.48 75.08 38.44 46.57 55.19 80.06 82.24
60 30.10 38.54 47.96 77.94 38.96 57.30 64.96 82.10 83.94

F1
20 21.33 31.19 39.95 70.33 37.00 33.53 40.13 74.63 75.69
40 26.90 37.12 43.27 75.40 36.94 45.23 56.25 79.36 81.02
60 27.28 37.77 46.58 77.97 37.35 56.49 65.73 81.81 82.50

CoraFull

ACC
20 29.33 17.78 56.68 41.68 58.44 54.50 47.74 58.90 59.02
40 36.23 25.01 60.60 44.80 62.98 60.28 57.20 63.62 64.59
60 40.60 29.65 62.00 46.68 64.38 61.58 60.18 65.36 67.81

F1
20 28.05 18.24 52.48 37.15 54.44 50.44 45.07 54.74 56.97
40 33.29 25.43 55.57 40.42 58.30 56.26 53.55 59.19 60.78
60 37.95 30.87 56.24 43.22 59.61 57.26 56.40 61.32 63.72

Chameleon

ACC
20 30.51 25.72 39.53 33.56 45.94 43.21 40.25 51.24 51.67
40 31.40 26.33 44.24 34.75 51.79 47.65 43.64 53.08 53.19
60 31.91 28.45 49.18 34.92 53.77 55.52 46.33 53.29 53.42

F1
20 30.24 25.61 40.52 33.41 45.25 42.98 41.84 50.64 50.42
40 30.87 26.12 43.84 34.79 50.72 46.53 43.52 52.47 52.75
60 31.22 26.89 48.77 34.88 53.47 56.72 45.39 52.93 52.99

Pubmed

ACC
20 60.25 58.86 79.06 79.62 79.27 80.54 80.89 81.65 79.49
40 60.78 59.34 79.76 80.24 80.15 81.54 81.92 82.01 82.41
60 62.31 59.96 80.48 80.95 80.94 81.69 82.33 82.35 82.45

F1
20 60.14 58.43 79.15 79.14 79.02 80.34 80.52 81.46 79.24
40 60.89 59.61 79.25 80.17 79.58 80.96 80.98 81.87 82.29
60 61.34 59.64 79.68 80.39 80.12 81.45 81.23 82.24 82.41
5.5. Model analysis

Effectiveness of the Multi-View Module. We used three datasets to
verify the effectiveness of multiple views. In each dataset, each view
was used as the model’s input. Then the results were compared with
the results of inputting all views simultaneously, as shown in Fig. 3.

Taking the ACM dataset as an example, the input contains three
views: co-conference, co-keywords, and co-author. It can be seen that
different views had different effects on the results, but overall, the
accuracy and F1 score of using a single view as the input are lower
than when using multi-views as the input.

Various views encompass varying degrees of information density.
Views with a higher information content tend to exert a more substan-
tial positive influence on the outcomes. Consequently, utilizing a single
view as the sole input may lead to poor prediction results. Nonetheless,
it is crucial for the model to retain these low-density information links,
as they continue to contribute positively to the prediction outcomes. As
8

a result, it is essential for a multi-view model to incorporate as many
views as feasible to optimize performance.

Effectiveness of the Multi-Layer Attention Module. Another feature
of our model is the multi-layer attention mechanisms, that is, attention
mechanisms within a single view and attention mechanisms between
multiple views. Here, we analyze the effects of different levels of
attention, as shown in Fig. 4.

First, we only used attention within a single view: SVA. Next,
we only used the attention between multi-views: MVA. Finally, the
complete multi-layer attention mechanism was used. It can be seen that
SVA and MVA are inferior to MVMA in terms of node classification
accuracy and F1 score because the influence between nodes is different,
and different views have different influences on the results. If all views
and all nodes are assigned the same weight, the model’s performance
decreases.

For example, in the IMDB dataset, some actors prefer collaborating
with fixed directors and actors to shoot multiple genres of movies.

Conversely, some actors prefer to make films in the same genre but
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Fig. 3. Effectiveness of the multi-view module on three datasets. A view that contains more information has a more significant positive impact on the results.
Fig. 4. Effectiveness of the multi-layer attention module. When the inputs contain multiple relationships, the model can learn more information, and the result is more accurate.
Fig. 5. Effectiveness of the autoencoder module.
t

Table 4
Node classification results of the variants on all dataset (%).

Datasets Metrics MVMA𝑆𝑉 MVMA𝐸𝑁 MVMA𝑆𝐴 MVMA

ACM ACC 92.73 92.22 91.95 93.75
F1 92.48 92.23 92.18 93.66

DBLP ACC 92.00 92.10 92.40 92.82
F1 92.18 91.98 92.05 92.43

IMDB ACC 60.50 59.90 60.17 60.65
F1 54.00 53.82 53.94 54.23

BlogCatalog ACC 87.82 87.65 87.69 88.09
F1 87.52 88.06 87.44 89.03

Flickr ACC 82.48 82.71 82.77 83.94
F1 81.90 82.34 82.19 82.50

CoraFull ACC 66.02 66.64 66.47 67.81
F1 62.72 62.25 62.12 63.72

Chameleon ACC 51.98 52.76 52.47 53.42
F1 51.67 51.65 52.76 52.99

Pubmed ACC 81.24 82.01 82.12 82.45
F1 81.64 81.72 81.96 82.41

tend to collaborate with different directors and actors. The examples
illustrate that it is essential to consider the impact of different nodes
9

and the impact of different views. This verifies the effectiveness of the
multi-layer attention module.

Effectiveness of the Autoencoder Module. Fig. 5 illustrates the
necessity of using an autoencoder. The horizontal coordinates are
the numbers of training epochs, and the vertical coordinates are the
accuracy and F1 scores. Experiments were performed on each dataset
separately, and the figure shows the model output with and without
the autoencoder.

By adding the autoencoder, the hidden layer representation does
not tend to converge prematurely to the same value. After using the au-
toencoder module, the model’s optimal result changed from around the
9th epoch to around the 14th. Additionally, the autoencoder ensures
that the model can learn the nodes’ structural and nodes’ relationships,
which verifies the effectiveness of the autoencoder module.

Effectiveness of 𝑘-Nearest Neighbor. Fig. 6 illustrates the impact of
he top 𝑘 neighborhoods in the 𝑘-NN graph. The horizontal coordinates

are the number of neighbors, and the vertical coordinates are the
accuracy. The experiments were performed on the BlogCatalog and
Flick datasets separately, and the figure shows that the accuracies
increased first and then started to decrease. We believe this result
occurred because a larger 𝑘 may cause a more significant number of
noisy edges.
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. Conclusions and future direction

In this paper, we present MVMA-GCN, a multi-view-based model
or semi-supervised node classification tasks. To aggregate neighbor
eatures of each node in a single view, we propose a single-view
onvolution. To capture the rich information in multiple relationships
etween nodes, we introduce a multi-layer attention mechanism that
earns the influence between different neighboring nodes and the influ-
nce between different relationship graphs. Additionally, we maximize
he difference between different relationship graphs by calculating the
ilbert–Schmidt independence criterion. We also redesigned an autoen-
oder module to improve node classification accuracy. Our extensive
xperiments on several benchmark datasets demonstrate the superior
erformance of the proposed model, and we verified the effectiveness
f different modules through ablation experiments.

In future research, a more challenging task is to propose a new
arge-scale node classification dataset composed of yearly snapshots
f nodes and study how the node evolutionary scenario impacts per-
ormance. Since nodes change over time, and previously non-existent
odes appear in the real world, this task is particularly relevant.
oreover, investigating the use of directed graphs as input could be

n interesting area of exploration for future research.
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