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Abstract
Knowledge graphs constantly evolve with new entities emerging,
existing definitions being revised, and entity relationships changing.
These changes lead to temporal degradation in entity linking mod-
els, characterized as a decline in model performance over time. To
address this issue, we propose leveraging graph relationships to ag-
gregate information from neighboring entities across different time
periods. This approach enhances the ability to distinguish similar
entities over time, therebyminimizing the impact of temporal degra-
dation. We introduce CYCLE: Cross-Year Contrastive Learning
for Entity-Linking. This model employs a novel graph contrastive
learning method to tackle temporal performance degradation in
entity linking tasks. Our contrastive learning method treats newly
added graph relationships as positive samples and newly removed
ones as negative samples. This approach helps our model effectively
prevent temporal degradation, achieving a 13.90% performance
improvement over the state-of-the-art from 2023 when the time
gap is one year, and a 17.79% improvement as the gap expands
to three years. Further analysis shows that CYCLE is particularly
robust for low-degree entities, which are less resistant to temporal
degradation due to their sparse connectivity, making them par-
ticularly suitable for our method. The code and data are made
available at https://github.com/pengyu-zhang/CYCLE-Cross-Year-
Contrastive-Learning-in-Entity-Linking.
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Context Left 

As of 2023, it is the world's largest 
online retailer and marketplace, 

smart speaker provider, cloud 
computing service through

Context Right 

Web Services, live-streaming 
service through Twitch, and 
Internet company as measured 
by revenue and market share. In 
2021, it surpassed…

Amazon

Mention

Amazon rainforest 
(Q177567)

Amazon company 
(Q3884)

Amazons warrior
(Q134154)

Figure 1: Entity linking (EL) connects text mentions to spe-
cific entities in a KG. In the example of this figure, the men-
tion ‘Amazon’ could refer to Amazon rainforest, Amazon
company, or mythical Amazons warriors entities. EL disam-
biguates this mention considering the surrounding mention
context to pinpoint the correct entity: Amazon company.

1 Introduction
Knowledge graphs (KGs) are multi-relational graphs representing
a wide range of real-world entities and knowledge structured as
facts [5]. In KGs, facts are represented as triples, denoted as (head
entity, relation, tail entity). KGs like ICEWS [3], GDELT [10], and
YAGO3 [15] not only contain numerous entities and their relations
but also incorporate timestamps, allowing to track the evolution of
the knowledge in these KGs. Each of these timestamps is part of a
quadruplet (head entity, relation, tail entity, timestamp), reflecting
the point in time a particular relation between head and tail enti-
ties was created. Such temporal features enable KG users to track
historical data trends, understand entity behavior over time, and
predict future events or facts, highly relevant in domains such as
medical and risk analysis systems [6], question-answering systems
[21], and recommendation systems [2]. However, the continuous
emergence of new entities and changes to existing ones, poses chal-
lenges in adapting entity representations, which in turn affects the
performance on tasks such as Entity Linking (EL) [17].

EL involves mapping mentions in text to entities in a KG. In
the example in Figure 1, EL maps the mention ‘Amazon’ in the
text, with its correct entity Amazon (company) in the KG. The term
‘Amazon’ could refer to Amazon (company), known for e-commerce,
or Amazon rainforest. The correct entity is decided by analyzing
the content of the context. If the context includes cloud computing,
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data source: Wikidata5M

Amazon.com, Inc. is an American 
multinational e-commerce company.

Amazon.com started as an online bookstore, 
but soon diversified, selling DVDs, e-book 

reader…

data source: TempEL 2019

bookstore

⋮⋮

Amazon.com, Inc. It is considered one of the 
Big Five American technology companies.

Engaged in e-commerce, cloud computing, 
online advertising, digital streaming, and 

artificial intelligence…

digital streaming

cloud computing
e-book reader 

Amazon (company)

digital streaming

cloud computing
e-book reader 

Amazon (company)

bookstoree-commerce

relation does 
not exist in 2019

data source: Wikidata5M

data source: TempEL 2022

relation does 
exist in 2022

for entity Amazon(company), in 
2022, positive sample include:

𝐴𝑚𝑎𝑧𝑜𝑛, 𝑑𝑖𝑔𝑖𝑡𝑎𝑙 𝑠𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔
𝐴𝑚𝑎𝑧𝑜𝑛, 𝑐𝑙𝑜𝑢𝑑 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔

relation does 
exist in 2019

relation does 
not exist in 2022

for entity Amazon(company), in 
2022, negative sample include:

𝐴𝑚𝑎𝑧𝑜𝑛, 𝑒𝑏𝑜𝑜𝑘 𝑟𝑒𝑎𝑑𝑒𝑟
𝐴𝑚𝑎𝑧𝑜𝑛, 𝑏𝑜𝑜𝑘𝑠𝑡𝑜𝑟𝑒

⋮⋮

e-commerce

Figure 2: This is an example of learning the embedding of the entity Amazon (company) in 2022. Gray nodes represent entities
that do not exist at a specific point in time. A (green) or (red) circle represents the use of a node as a positive or negative
sample, respectively. In 2019, Amazon (company) had three neighbors: e-commerce, e-book reader, and bookstore. By 2022, while
e-commerce continued as a neighbor, e-book reader and bookstore (negative samples) were replaced by digital streaming and
cloud computing (positive samples). This shift indicates a change in Amazon (company)’s focus.

it likely refers to Amazon (company). Beyond the challenge of dis-
ambiguating the correct entity given the mention and its context,
this task becomes even more difficult in the face of the constant
addition of new entities in a KG and the evolving meanings of ex-
isting entities (continual entities). This change leads to temporal
degradation - a decline in model performance as the KG moves
from the state where the EL model was initially trained.

In this paper, we develop a new model for EL that deals with
temporal change. For instance, as shown in Figure 2, in 2019, the pri-
mary sources of income for Amazon (company) were e-book reader
and bookstore. By 2022, however,Amazon (company) had established
new connections, and recently added entities like digital streaming
and cloud computing had become major contributors to its income.
Concentrating on these new connections allows for a deeper under-
standing of the current state of the entity and its context. Although
these changes might appear minor, they substantially affect the
model’s ability to represent entities accurately.

To address this challenge, a benchmark introduced by [8] lever-
ages the differences between consecutive snapshots of Wikipedia
and Wikidata to provide a platform for testing and training lan-
guage models, enabling them to adapt to and update continually
changing knowledge information. Furthermore, recent work has
focused on reducing bias through graph contrastive learning [27].
In addition, recent studies like [38] on self-supervised biomedical
EL and [26] on multimodal EL with contrastive learning have ad-
vanced the field by improving accuracy. However, existing methods
do not leverage the temporal evolution of structured relations be-
tween entities in a KG across different years. To tackle this research
gap, we introduce an expanded version of the TempEL [36] dataset
named GCL-TempEL (see Section 4). The original TempEL dataset
consists of 10 yearly snapshots, evenly distributed, from English
Wikipedia entities, spanning from January 1, 2013, to January 1,
2022. Building upon this, we have incorporated the relationships

between entities for each year from the KG introduced in the Wiki-
data5M [28] dataset, and the changes in these relationships over
time.

We hypothesize that the evolution of KG relationships across
different years in our newly introduced dataset, can provide crucial
information about the changes in the entities (see Figure 2). To sup-
port this, we introduce CYCLE: Cross-Year Contrastive Learning
in Entity-Linking. CYCLE is a novel approach to solve EL task in
temporally evolving setting based on graph contrastive learning,
leveraging the features of temporal data to construct a cross-year
contrastive mechanism. Doing so ensures that similar entity rep-
resentations remain distinct over time. Our contrastive learning
approach uses KG relationships to obtain structurally enhanced en-
tity representations. We define such positive and negative samples
as follows:

1 Positive samples: sampled from a pool of newly added rela-
tionships between the target entity and its neighbors.

2 Negative samples: sampled from a pool of newly deleted
relationships between the target entity and its neighbors.

Our experimental results demonstrate that our approach can
be particularly advantageous in updating representations of less
frequent, long tail, entities. Such entities have lower degree connec-
tivity in a KG and, as a result, are inherently more vulnerable to the
effects of temporal changes in their neighbors. Concretely, a change
in the meaning of even one neighboring node can significantly im-
pact the low-degree node’s representation. This phenomenon has
been also observed in other large-scale KGs such as ICEWS and
GDELT [25, 30, 31].

Our contributions are summarized as follows:
• A dataset, GCL-TempEL, that incorporate cross-year KG tem-
poral tracking of entity changes. Concretely, we define posi-
tive and negative samples with respect to a specific temporal
snapshot.

• CYCLE: a novel model employing graph contrastive learning
to mitigate temporal degradation in EL. CYCLE enhances
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the temporal stability of low-degree node representations,
which are more vulnerable to semantic changes due to sparse
connections.

• Experiments across three EL datasets that demonstrate sub-
stantial improvements in model performance, particularly
for low-degree nodes. The experiments highlight CYCLE’s
effectiveness in addressing structural vulnerabilities in KGs.

2 Related Work
2.1 Entity Linking
Generally, the Entity Linking (EL) task is categorized into three
main phases: mention detection, candidate generation, and can-
didate ranking. Recent studies have developed end-to-end mod-
els that integrate all three phases into a single process [4, 16, 19].
Specifically, the CHOLAN model [19] proposed two transformer-
based models integrated sequentially to tackle the EL task. The
first transformer identifies entity mentions in the text, while the
second assigns each mention to a predefined candidate, enhanced
by contextual data from the sentence and Wikipedia. As the field
evolved, addressing the linking of mentions to previously unseen
entities - a scenario termed zero-shot EL - remained a significant
challenge [20]. To tackle this, [32] introduce BLINK, a highly effec-
tive two-stage BERT-based architecture for zero-shot entity linking.
This model and others [1, 20, 33] rely on traditional candidate re-
trieval methods and employ a cross-encoder for candidate ranking.
Building on the BLINK model, KG-ZESHEL [20] aims to combine
graph vectors with textual content to address the zero-shot problem.
Their method enhances the model’s ability to clarify ambiguities
and improve EL accuracy.

However, the above work did not capture the impact of changes
in entity relationships on future predictions when faced with dy-
namic KGs. To tackle this issue, our study introduces a cross-year
contrastive mechanism to capture KG relationship changes across
the years, thereby improving the performance on EL task in a tem-
porally evolving setting.

2.2 Temporal Knowledge Graphs
Temporal Knowledge Graphs (TKGs), capturing the dynamic evo-
lution of entities and their relationships over time, are gaining
increased attention [25]. While most of the existing graph datasets
are designed for static graphs, TKGs stand out for their ability to
chronicle the continuous evolution of both entities and relations.

The application of TKGs spans various sectors, each benefiting
from its capacity to track changes over time. For e-commerce, TKGs
enhance understanding of consumer behavior patterns over time
[39]. Similarly, the Internet of Things (IoT) provides a dynamic
framework for interpreting evolving data from interconnected de-
vices [12]. Healthcare applications of TKGs are particularly note-
worthy, as they aid in tracking the progression of diseases and
patient health trends [6]. In industrial settings, TKGs play a piv-
otal role in monitoring and predicting machinery’s lifecycle and
maintenance needs. Recent advances in large language models
(LLMs) have further expanded the potential of TKGs, particularly in
forecasting applications [13]. These architectures offer new ways
to comprehend structured temporal data, potentially revolutioniz-
ing traditional embedding-based and rule-based applications using

TKGs. Moreover, integrating temporal information into KG embed-
ding has significantly improved model performance, underscoring
the importance of time-aware approaches in knowledge represen-
tation [7, 11].

However, these studies overlook the challenges of low-degree
nodes with very sparse connectivity, which can significantly impact
the accuracy and robustness of temporal predictions. To address
this, our model employs graph contrastive learning on positive and
negative samples (see Figure 2) to enhance the neighbor information
for low-degree nodes, thereby improving their representation in
the graph.

2.3 Graph Contrastive Learning
Recent Graph Contrastive Learning (GCL) advancements highlight
its growing significance in graph representation learning. PyGCL
[40] emphasizes the importance of design elements like augmenta-
tion functions and contrasting modes. GraphCL [34] stands out for
its ability to learn robust representations from unlabeled graphs,
though its effectiveness relies on specific data augmentation strate-
gies. POT-GCL [35] addresses the need to maximize similarity be-
tween positive node pairs and minimize it for negative pairs, while
recognizing unresolved issues due to complex graph structures.
In contrast, SGCL [24] demonstrates the low impact of negative
samples for achieving top performance. Finally, EdgePruner [9] ex-
poses GCL’s vulnerability to poisoning attacks, suggesting a need
for better defense mechanisms in graph learning models. These
studies mark a significant evolution in GCL, indicating its potential
and challenges in graph representation learning.

Our work expands the application of contrastive learning tech-
niques within KGs to include temporal evolution. Specifically, we
have developed a new method that considers the impact of both
newly added and removed node relationships at each timestamp.

3 Task Formulation and Definition
Entity Linking (EL). The EL task takes a given text documentD as
input. This document is represented as a list of tokens [𝑤1, . . . ,𝑤𝑟 ],
where 𝑟 indicates the length of the document. Each document con-
tains a list of entity mentions MD = [𝑚1, . . . ,𝑚𝑛], where each
mention𝑚𝑖 corresponds to a span of continuous tokens in D, repre-
sented as𝑚𝑖 = D [𝑥,𝑦]. An EL model subsequently yields a list of
mention-entity pairs {(𝑚𝑖 , 𝑒𝑖 )}𝑖∈[1,𝑛] . Every entity 𝑒𝑖 is mapped to
the corresponding entity in a Knowledge Base, such as Wikipedia.
It is assumed that both the title and description of these entities are
available, a standard premise in the EL task [14].

Graph. A graph is defined as 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of
𝑁 nodes (i.e., entities) {𝑣1, 𝑣2, · · · , 𝑣𝑁 }. 𝐸 is the set of𝑀 edges (i.e.,
relationships) represented as {𝑒1, 𝑒2, · · · , 𝑒𝑀 }, where each 𝑒𝑖 is a
pair of nodes from 𝑉 , such as 𝑒𝑖 = (𝑣𝑎, 𝑣𝑏 ).

4 Dataset Construction
We extend the TempEL1 dataset, a benchmark for temporal Entity
Linking (EL), withWikidata5M2. The resultingGCL-TempEL dataset
comprises two text-based components inherited from TempEL,
namely entity description and mention context, extended with

1https://cloud.ilabt.imec.be/index.php/s/RinXy8NgqdW58RW
2https://deepgraphlearning.github.io/project/wikidata5m
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three graph-based components: relation graph, feature graph,
and feature matrix. Additionally, it includes both positive and
negative samples. Both the relation and feature graphs depict yearly
entity relationships. The construction process is illustrated in Fig-
ure 3, and it introduces the following components:

TempEL 
dataset

Wikidata5M 
dataset

entity 
description

negative 
samples

token 
frequency list

relation graph

mention 
context

feature graph

new entities

continual 
entities

description 
embedding

feature matrix

data source

positive 
samples

cross-year 
changes

𝑘-NNs

Figure 3: The dataset construction process. We use Wiki-
data5M to extend TempEL with strutured graph representa-
tions. For each year, we identify newly added and removed
edges for a target entity. Furthermore, we extract feature
graph and feature matrix based on the textual description of
the target entity. The green section represents the input to
our model.

Entity descriptions and mention contexts. First, we cate-
gorized each year of data from the TempEL dataset into entity
descriptions and mention context parts based on the year. The entity
description comprises the title, text, document ID, and the unique
ID of the entity (its QID). The mention context consists of the text
surrounding the entity mention (to the left and to the right), the
mention itself, target entity as label, QID, and category. Further-
more, we categorized the mentions into two groups: those linked to
continual entities, which exist across all the years in GCL-TempEL,
and those linked to new entities, which are created in a specific year
and do not exist in previous years.

Relation graph.We create a relation graph based on the Knowl-
edge Graph (KG) relationships in the Wikidata5M dataset and the
entity IDs in the TempEL dataset. We matched the entities involved
in the relationships in Wikidata5M with the ones that exist in the
TempEL dataset. Concretely, we keep a relationship if both en-
tities are involved in a relationship in the Wikidata5M data and
are also present in TempEL. The relation graph is an 𝑛 × 𝑛 adja-
cency matrix, where 𝑛 represents the total number of entities in
the GCL-TempEL dataset. Each row indicates whether an entity has
a connection with another entity. Concretely, the adjacency matrix
is made up of 0s and 1s. If entity 𝑖 and entity 𝑗 are connected, the
value in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of the matrix is 1; otherwise, it
is 0. After we construct the relation graph, we use the differences
in node relationships across the years (cross-year changes in Figure
3) to construct positive and negative samples, which are defined as
follows:

1 Positive samples: sampled from a pool of newly added rela-
tionships between the target entity and its neighbors.

2 Negative samples: sampled from a pool of newly deleted
relationships between the target entity and its neighbors.

Feature graph. KGs are inherently incomplete and sparse [18].
As a result, we consider that relation graph derived from Wiki-
data5M KG above does not contain all the possible relations be-
tween entities, which limits its expressiveness. To address this, we
introduce feature graph which extends the edges in the relation
graph with additional edges given by 𝑘-nearest neighbors (𝑘-NN)
with other entities. In order to create this graph, we use pre-trained
bert-base-uncased model to embed the textual description of each
of the entities. We use the resulting description embeddings to iden-
tify the 𝑘-NN entities for each of the target entities using cosine
similarity. The resulting feature graph highlights the connections
between entities based on their entity descriptions. We hypothe-
size that such connections will provide additional information that
would allow to generate more representative entity embeddings
for a given temporal snapshot. Similarly to the relation graph, the
feature graph is represented as 𝑛 × 𝑛 adjacency matrix, where 𝑛
is the total number of entities in the dataset. Each row indicates
whether an entity has a connection with other entities. If entity 𝑖
and entity 𝑗 are connected, the value in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column
of the matrix is 1; otherwise, it is 0.

Feature matrix. Building on previous research [29], we devel-
oped a Feature matrix to derive more representative entity embed-
dings based on their descriptions in the dataset. This matrix not
only provides a robust representation of entities but also improves
the graph aggregation process, enabling the generation of more
nuanced embeddings. The goal of the Feature matrix is to represent
each entity based on the tokens from entity descriptions in the
dataset. After obtaining the token IDs for each entity using the pre-
trained bert-base-uncased model, we filtered all token IDs based
on their frequency of occurrence (see token frequency list in Figure
3). We retained those token IDs that appeared between 46 and 200
times. We discarded highly frequent token IDs since these tokens,
such as ‘is,’ ‘an,’ ‘the,’ and other common words, do not offer mean-
ingful differentiation among entities. Also, the less frequent token
IDs were removed due to the possibility of them being meaningless
noise or random codes, and including an excess of these rare tokens
would make the matrix too sparse, slowing down computation. The
resulting feature matrix is an 𝑛 ×𝑚 dimensional adjacency matrix,
where 𝑛 is the total number of entities in the dataset, and𝑚 is the
number of retained token IDs. This matrix is composed of 1s and
0s, if the data in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of the matrix is 1, it
indicates that entity 𝑖 contains the 𝑗𝑡ℎ token.

5 Approach
Figure 4 illustrates the framework of our model. The core idea is
to exploit the relationships in graph-based input between entities
across different years in the dataset. These relationships are con-
tained in relation graph (𝐺𝑟 ), feature graph (𝐺 𝑓 ) and feature matrix
(𝑋 ) (see Section 4 for details). When Knowledge Graph (KG) en-
tities appear or disappear at a specific point in time, they can be
used as positive and negative samples, respectively. Once these
positive and negative samples are identified across different years
in our GCL-TempEL dataset, we employ them in graph contrastive
learning module. This module employs contrastive learning loss to
efficiently adapt entity embeddings to temporal changes. Besides
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text-based input

⋮

Amazon purchased the 
Whole Foods Market 
supermarket chain in 

2017. The company has 
multiple subsidiaries, 

including Amazon Web 
Services, providing cloud 
computing, a self-driving 

car division, Kuiper 
Systems, a satellite 
Internet provider.

Amazon.com, Inc.,[1] 
doing business as 

Amazon (/ˈæməzɒn/, 
AM-ə-zon; UK also 

/ˈæməzən/, AM-ə-zən), is 
an American 

multinational technology 
company, engaged in e-

commerce, cloud 
computing, online 
advertising, digital 

streaming, and artificial 
intelligence. It is 

considered one of the Big 
Five American 

technology companies.
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𝑦𝑚 ∙ 𝑦𝑗
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𝑧𝑖
𝑓
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Graph Embedding ModuleBi-encoder Module

𝐺𝑟

𝑋

𝐺𝑓
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𝑓
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Graph Contrastive Learning Module

𝑒𝑖 𝑒𝑖

20222019 ⋮ ⋮

⋮

feature matrix

𝑒1

⋮

𝑒2

𝑒𝑖

Figure 4: The proposed CYCLE architecture leverages both text-based (left) and graph-based (right) inputs. Additionally, it
introduces a novel Graph Contrastive Learning Module to efficiently adapt entity representations to temporal changes in the
graph-based inputs. The figure illustrates positive (green) and negative (red) samples used in this Graph Contrastive Learning
Module to capture temporal changes in graph-based inputs of the year 2022 with respect to those of the year 2019 for entity 𝑒𝑖 .

using the graph-based input 𝑋 , 𝐺𝑟 , 𝐺 𝑓 , CYCLE also leverages tex-
tual information (see left part of Figure 4) composed of mention
contexts and entity descriptions.

First, the bi-encoder module in Section 5.1 employs two separate
BERT transformers to transform mention context and entity de-
scription into dense vectors𝑦𝑚 and𝑦𝑒 . Entity candidates are scored
via the dot product of these vectors. We introduce 𝐿𝑒 to maximize
the correct entity’s score against randomly sampled entities. Sec-
ond, we input the pre-constructed relation graph 𝐺𝑟 , feature graph
𝐺 𝑓 , feature matrix 𝑋 , and cross-year positive and negative sam-
ples into the Graph Embedding Module in Section 5.2. Our model
encodes entities from relation and feature graphs and uses graph
contrastive learning losses 𝐿𝑓 and 𝐿𝑟 across different years. Lastly,
all the loss functions are unified for joint optimization.

5.1 Bi-encoder Module
Mention Representation. Following [32], the mention represen-
tation 𝜏𝑚 is constructed from tokens of the surrounding context
and the mention:

𝜏𝑚 = [CLS] ctxt𝑙 [M𝑠 ] mention [M𝑒 ] ctxt𝑟 [SEP], (1)

where ctxt𝑙 , ctxt𝑟 denote tokens before and after the mention, and
[M𝑠 ], [M𝑒 ] tag the mention. The input’s maximum length is set to
128, consistent with the baseline.

Entity Representation. The representation 𝜏𝑒 consists of to-
kens of the entity title and its description:

𝜏𝑒 = [CLS] title [ENT] description [SEP] , (2)

where [ENT] separates the title and description.
Encoding.We use the bi-encoder architecture from [32] to en-

code descriptions into the vectors 𝑦𝑒 and 𝑦𝑚 :

𝒚𝒎 = red (𝑇1 (𝜏𝑚)) , (3)
𝒚𝒆 = red (𝑇2 (𝜏𝑒 )) , (4)

where, 𝑇1 and 𝑇2 are transformers, and red(.) takes the last layer
of the output of the [CLS] token to reduce the sequence of vectors
into a single vector.

Scoring. Entity candidate scores are computed via dot-product:

𝑠 (𝑚, 𝑒𝑖 ) = 𝒚𝒎 · 𝒚𝒆 𝒊 . (5)

5.2 Graph Embedding Module
We aim to enable the learning connections between nodes from
the relation graph 𝐺𝑟 . By inputting the relation graph 𝐺𝑟 and node
features 𝑋 , we obtain specific embeddings, denoted as 𝑧𝑟 .

In the relation graph, we consider the target node 𝑒𝑖 that is con-
nected to 𝑠 other nodes {𝑛1, 𝑛2,..., 𝑛𝑠 }. Thus, the set of neighbors
for node 𝑒𝑖 can be defined as 𝑁 𝑠

𝑖
. For node 𝑒𝑖 , each neighbor con-

tributes differently to its embedding. To effectively integrate these
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contributions, we employ an attention mechanism to aggregate
messages from the neighbors to the target node 𝑒𝑖 :

𝑧𝑟𝑖 = 𝜎
©«

∑︁
𝑗∈𝑁 𝑠

𝑖

𝛼𝑖, 𝑗 · 𝑥 𝑗
ª®¬ , (6)

where 𝜎 is a nonlinear activation, 𝑥 𝑗 is the feature of node 𝑒 𝑗 , and
𝛼𝑖, 𝑗 denotes the attention value of node 𝑗 to node 𝑒𝑖 . It is calculated
as follows:

𝛼𝑖, 𝑗 =
exp

(
LeakyReLU

(
a⊤ ·

[
𝑥𝑖 ∥𝑥 𝑗

] ) )∑
𝑙∈𝑁𝑖

exp (LeakyReLU (a⊤ · [𝑥𝑖 ∥𝑥𝑙 ]))
, (7)

where a is the attention vector and ∥ denotes concatenate operation.
Following [29], we randomly sample a subset of neighbors in 𝑁 𝑠

𝑖
during each epoch. If the number of neighbors exceeds a predefined
threshold, we sample neighbors as 𝑁 𝑠

𝑖
. If the predefined threshold

number of positive samples cannot be found, all the positive samples
will be selected. In this case, the number of positive samples will be
less than the predefined threshold. This way, we ensure that every
node aggregates the same amount of information from neighbors,
and promote diversity of embeddings in each epoch.

When using the feature graph𝐺 𝑓 and node features 𝑋 as inputs,

the embeddings are denoted as 𝑧 𝑓
𝑖
.

5.3 Cross-year Contrastive Module
The input feature graph embedding 𝑧 𝑓

𝑖
and relation graph embed-

ding 𝑧𝑟
𝑖
are passed through a multi-layer perceptron with a single

hidden layer. This process maps the features into a representation
space where the contrastive loss is calculated:

𝑧
𝑓 𝑝

𝑖
=𝑊 (2)𝜎 (𝑊 (1)𝑧 𝑓

𝑖
+ 𝑏 (1) ) + 𝑏 (2) , (8)

𝑧
𝑟𝑝

𝑖
=𝑊 (2)𝜎 (𝑊 (1)𝑧𝑟𝑖 + 𝑏

(1) ) + 𝑏 (2) , (9)
where, 𝜎 represents exponential linear unit, a type of non-linear
activation function. The parameter sets𝑊 (2) ,𝑊 (1) , 𝑏 (2) , 𝑏 (1) are
shared across the input graphs for embedding consistency.

To define the positive 𝑃𝑟
𝑖
and negative 𝑁 𝑟

𝑖
samples for node 𝑒𝑖

in relation graph 𝐺𝑟 at time 𝑡2:

𝑃𝑟𝑖 (𝑡2) = { 𝑗 | (𝑖, 𝑗) ∉ 𝐸𝑡1 ∧ (𝑖, 𝑗) ∈ 𝐸𝑡2 }, (10)
𝑁 𝑟
𝑖 (𝑡2) = { 𝑗 | (𝑖, 𝑗) ∈ 𝐸𝑡1 ∧ (𝑖, 𝑗) ∉ 𝐸𝑡2 }, (11)

here, 𝐸𝑡1 and 𝐸𝑡2 denote the edge sets at times 𝑡1 and 𝑡2, respectively.
(𝑖, 𝑗) ∉ 𝐸𝑡1 indicates that there was no edge between nodes 𝑒𝑖 and
𝑒 𝑗 at 𝑡1, whereas (𝑖, 𝑗) ∈ 𝐸𝑡2 indicates that an edge between nodes 𝑒𝑖
and 𝑒 𝑗 exists at time 𝑡2. The symbol ∧ is used to denote the logical
AND operation.

In a feature graph𝐺 𝑓 , positive samples 𝑃 𝑓

𝑖
includes all neighbor-

ing nodes directly connected to 𝑒𝑖 , while the set of negative samples
𝑁

𝑓

𝑖
includes all nodes that are not connected to 𝑒𝑖 .

5.4 Objective Function
The objective function is calculated based on three components:
two contrastive loss functions 𝐿𝑓 and 𝐿𝑟 , and a task-specific EL loss
function 𝐿𝑒 defined below.

Entity Linking Loss Function 𝐿𝑒 . The objective is to train
the network such that it maximizes the score of the correct entity

compared to the other entities from the same batch. Formally, for
each training pair (𝑚𝑖 , 𝑒𝑖 ) within a batch of 𝑁 pairs, the loss 𝐿𝑒 is
defined as:

𝐿𝑒 (𝑚𝑖 , 𝑒𝑖 ) = −𝑠 (𝑚𝑖 , 𝑒𝑖 ) + log
𝑁∑︁
𝑗=1

exp
(
𝑠
(
𝑚𝑖 , 𝑒 𝑗

) )
. (12)

Contrastive Learning Loss Functions 𝐿𝑓 and 𝐿𝑟 . The con-
trastive loss function 𝐿𝑓 and 𝐿𝑟 for a given set of positive (𝑃𝑖 ) and
negative (𝑁𝑖 ) samples. The purpose of 𝐿𝑓 is to compute the con-
trastive loss where the embedding of node 𝑒𝑖 is from graph 𝐺 𝑓 ,
while the positive and negative samples are from graph 𝐺𝑟 . Con-
versely, 𝐿𝑟 computes the contrastive loss where the embedding of
node 𝑒𝑖 is from graph 𝐺𝑟 , and the positive and negative samples
are from graph 𝐺 𝑓 . This approach maximizes the advantages of
contrastive learning by comparing node embeddings from different
graphs and different sets of positive and negative samples, thereby
capturing complex structural and semantic information from the
graphs:

𝐿𝑓 = − log

∑
𝑗∈𝑃𝑟

𝑖
exp

(
sim

(
𝑧
𝑓 𝑝

𝑖
,𝑧
𝑟𝑝

𝑗

)
𝜏

)
∑
𝑘∈{𝑃𝑟

𝑖
∪𝑁 𝑟

𝑖 } exp
(
sim

(
𝑧
𝑓 𝑝

𝑖
,𝑧
𝑟𝑝

𝑘

)
𝜏

) , (13)

𝐿𝑟 = − log

∑
𝑗∈𝑃 𝑓

𝑖

exp

(
sim

(
𝑧
𝑟𝑝

𝑖
,𝑧

𝑓 𝑝

𝑗

)
𝜏

)
∑
𝑘∈

{
𝑃
𝑓

𝑖
∪𝑁 𝑓

𝑖

} exp (
sim

(
𝑧
𝑟𝑝

𝑖
,𝑧

𝑓 𝑝

𝑘

)
𝜏

) , (14)

where the function 𝑠𝑖𝑚 computes cosine similarity between two
vectors, and the temperature parameter 𝜏 helps prevent the model
from getting stuck in local optima during training. 𝑃𝑟

𝑖
and 𝑃 𝑓

𝑖
are

the sets of positive samples for node 𝑒𝑖 , and 𝑁 𝑟
𝑖
and 𝑁 𝑓

𝑖
are the sets

of negative samples for node 𝑒𝑖 .
Overall Objective Function. The final objective function is

a weighted sum of the individual 𝐿𝑒 , 𝐿𝑟 , and 𝐿𝑓 loss functions
calculated above:

𝐿 = 𝑎𝐿𝑒 + 𝑏𝐿𝑓 + 𝑐𝐿𝑟 , (15)
where 𝑎, 𝑏 and 𝑐 are weights for the three losses defined above.

6 Evaluation
In this section, we evaluate the performance of the proposed model
across three Entity Linking (EL) datasets. The implementation of
our approach is based on the original codebase BLINK3 and HeCo4
[29]. We selected BLINK and SpEL5 [22] because of their relevance
and performance benchmarks in the field. BLINK has excellent
scalability and serves as part of our model’s codebase. Furthermore,
SpEL is the latest state-of-the-art as of 2023. Comparison with these
models highlights the influence of integrating additional structured
graph-based input and conducting graph contrastive learning on
node embeddings in CYCLE to mitigate temporal performance
degradation. Experimental details can be found in [37].
3https://github.com/facebookresearch/BLINK
4https://github.com/liun-online/HeCo
5https://github.com/shavarani/SpEL
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6.1 Datasets
Our proposed model is evaluated on three datasets which are sum-
marized in Table 1.

Table 1: Summary of the used datasets’ statistics.

Dataset Train Validation Test Entities

GCL-TempEL:
Continual Entities 1,764 42,096 48,215 136,227

GCL-TempEL:
New Entities 1,764 42,096 48,215 136,227

ZESHEL 49,275 10,000 10,000 492,321
WikiLinksNED 2,188,782 10,000 10,000 5,455,160

GCL-TempEL.6 This dataset covers four years, from 2019 to
2022. GCL-TempEL is extended from Graph-TempEL7 and incor-
porates additional positive and negative samples with respect to
specific temporal snapshot. Each year within the dataset is divided
into training (1,764 samples), validation (approximately 42k samples,
matching the original TempEL dataset), and testing sets (approxi-
mately 48k samples, also matching the original TempEL dataset).
The number of entities remains consistent across all temporal snap-
shots. It is important to note that the training set includes only
1,764 samples because the original TempEL training dataset, which
contains around 130,000 samples, has only 1,764 samples of new
entities. The new entities subset, reflecting evolving trends in KGs,
comprises entities with limited historical data, posing a greater chal-
lenge for accurate distinction. To ensure a balanced comparison,
we also randomly selected 1,764 samples for continual entities.

Zero-shot Entity Linking (ZESHEL).8 This dataset covers var-
ious subjects, such as a fictional universe from a book or film series,
mentions, and entities with detailed document descriptions. The
train, validation, and test sets have 49K, 10K, and 10K examples,
respectively. Specifically, the training set includes the following
domains: ‘american football’, ‘doctor who’, ‘fallout’, ‘final fantasy’,
‘military’, ‘pro wrestling’, ‘star wars’, ‘world of warcraft’. The val-
idation set includes ‘coronation street’, ‘muppets’, ‘ice hockey’,
and ‘elder scrolls’ domains. Finally, the test set includes ‘forgotten
realms’, ‘lego’, ‘star trek’, and ‘Yugioh’ domains. A distinctive fea-
ture of this dataset is the variation in domains between the training
set and the validation and test sets. This setup effectively reflects
integrating newly added entities into a Knowledge Graph (KG).
The dataset features a range of 10K to 100K entity candidates per
domain, with a total of 500K entities.

WikiLinksNED.9 This dataset was curated to address the chal-
lenges in the field of named entity disambiguation [23]. Spanning a
wide array of topics, from historical events to contemporary figures,
the entities in this dataset are associated with detailed document
descriptions. The dataset is partitioned into train, dev, and test sets
with 2.1M, 10K, and 10K examples, respectively.

6https://doi.org/10.5281/zenodo.12794944
7https://doi.org/10.5281/zenodo.12794960
8https://github.com/facebookresearch/BLINK/tree/main/examples/zeshel
9https://github.com/yasumasaonoe/ET4EL

6.2 Training Details
We compare our approach to the zero-shot EL BLINK model [32].
Concretely, we reuse the same hyperparameter settings and the
same bert_uncased_L-8_H-512_A-8 pre-trained model to train the
bi-encoder.

Parameter Settings. We utilize recall@𝑁 as our evaluation
metric, with 𝑁 being 1, 2, 4, 8, 16, 32, and 64. A prediction is correct
if the true answer is within the model’s top 𝑁 predictions. The
bi-encoder model is trained on the ZESHEL dataset for 5 epochs,
using mention context and entity description tokens at a learning
rate 1e-05. On the GCL-TempEL dataset, training is performed for
1 epoch under similar conditions. The model undergoes annual
training and testing on test sets from 2019 to 2022, with each year’s
model being trained and validated on that year’s data before testing
across other years.

Training Environment and Inference Time. Software ver-
sions: Python 3.11.5; PyTorch 2.1.0_cuda 12.1_cudnn 8.9.2; Faiss-gpu
1.6.5; Numpy 1.26; SciPy 1.11.3; scikit-learn 1.3.2. All the experi-
ments were run on a single A100 GPU with 40GB RAM.

6.3 Main Results
Table 2 showcases the effectiveness of our model in addressing
temporal degradation on the GCL-TempEL dataset. We evaluate
the performance on continual and new entities sets. Each column
in the table represents the years’ gap between the training and
testing datasets, as denoted by the digits from 0 to 3. For instance,
0 indicates that training and testing datasets come from the same
year, while 3 indicates that the model was trained in 2019 and tested
in 2022. The rows are divided based on various metrics: @1 to @64.
‘Boost’ displays a comparison between our model CYCLE and SpEL
model, calculated as Boost = Our Model’s Result−SpEL Model’s Result

SpEL Model’s Result .
Table 2 demonstrates that our model consistently outperforms

the BLINK baseline as well as SpEL, with its superiority becoming
increasingly clear as the temporal gap between training and testing
datasets grows. Specifically, when the temporal gap is one year, and
the evaluation metric is @1, our model exhibits a 23.78% (continual
entities) and 12.86% (new entities) improvement. This improvement
boosts to 30.24% (continual entities) and 14.68% (new entities) with
a two-year gap and jumps to 36.26% (continual entities) and 15.25%
(new entities) when the gap extends to three years. The observed
performance improvement can be attributed to the baseline model’s
limited exposure to previously unseen new entities, resulting in
a lack of samples for effective learning. In our model, graph con-
trastive learning enhances the distinction of each node’s unique
characteristics. This approach effectively enables the model to iden-
tify and accurately represent new entities, even without similar
historical data.

Figure 5 displays recall@1 results from the continual and new
entities datasets. We compare our proposed model against the base-
line models. The x-axis indicates the year gap between training
and testing sets. Overall, our model consistently outperforms the
baselines. Two different evaluation approaches are examined: 1)
forward and backward (f & b), referring to training on the past and
testing on the future data, and vice versa, and 2) only forward (f)
where the models are only trained on the past and evaluated on
the future data. For example, when the year gap is 3, the forward
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Table 2: The performance of models on the GCL-
TempEL dataset across varying time gaps for both new and
continual entity sets. The best results are highlighted in
bold.

0 1 2 3 0 1 2 3

Continual Entities New Entities

@1

BLINK 0.177 0.181 0.182 0.177 0.132 0.132 0.132 0.142
SpEL 0.229 0.234 0.228 0.221 0.172 0.169 0.167 0.192
CYCLE 0.286 0.289 0.297 0.301 0.184 0.191 0.192 0.222
Boost (%) 25.12 23.78 30.24 36.26 6.99 12.86 14.68 15.28

@2

BLINK 0.260 0.265 0.268 0.263 0.197 0.197 0.198 0.211
SpEL 0.320 0.328 0.327 0.322 0.239 0.247 0.258 0.261
CYCLE 0.403 0.409 0.413 0.413 0.271 0.282 0.274 0.331
Boost (%) 26.11 24.73 26.27 28.31 13.23 14.15 6.29 26.73

@4

BLINK 0.357 0.364 0.367 0.362 0.277 0.277 0.278 0.294
SpEL 0.429 0.436 0.430 0.429 0.329 0.340 0.333 0.354
CYCLE 0.522 0.527 0.532 0.543 0.378 0.389 0.388 0.434
Boost (%) 21.65 21.09 23.73 26.55 14.80 14.52 16.31 22.49

@8

BLINK 0.463 0.469 0.475 0.470 0.370 0.370 0.374 0.392
SpEL 0.546 0.544 0.554 0.548 0.423 0.440 0.439 0.472
CYCLE 0.633 0.640 0.647 0.648 0.487 0.497 0.491 0.548
Boost (%) 15.94 17.60 16.77 18.30 15.11 12.93 12.00 16.25

@16

BLINK 0.571 0.576 0.581 0.578 0.472 0.471 0.474 0.491
SpEL 0.645 0.645 0.656 0.652 0.539 0.541 0.554 0.551
CYCLE 0.719 0.719 0.724 0.715 0.593 0.602 0.596 0.644
Boost (%) 11.58 11.54 10.31 9.76 9.97 11.25 7.61 16.98

@32

BLINK 0.675 0.680 0.685 0.683 0.576 0.576 0.577 0.593
SpEL 0.732 0.739 0.744 0.741 0.641 0.646 0.637 0.673
CYCLE 0.811 0.812 0.817 0.812 0.689 0.697 0.688 0.731
Boost (%) 10.90 9.91 9.81 9.64 7.54 7.96 7.98 8.56

@64

BLINK 0.769 0.774 0.778 0.776 0.677 0.676 0.679 0.694
SpEL 0.820 0.827 0.825 0.824 0.732 0.733 0.739 0.754
CYCLE 0.871 0.872 0.874 0.878 0.780 0.784 0.778 0.811
Boost (%) 6.30 5.42 5.94 6.49 6.59 6.93 5.27 7.52

Ave. Boost (%) 16.80 16.29 17.58 19.33 10.60 11.51 10.02 16.26

and backward (f & b) setting includes two scenarios: the model
trains in 2019 and tests in 2022, and trains in 2022 and tests in 2019.
However, the only forward (f) setting only includes one scenario:
the model trains in 2019 and tests in 2022. Notably, a zero-year gap
implies the same years for training and testing are used, leading to
equal recall values in both forward and backward (f & b) and only
forward (f) setting. Our model’s only forward (f) setting consistently
outperforms its forward and backward (f & b) counterpart. We be-
lieve this demonstrates that when using previously non-existent
entities as the training set, our model is more adept at capturing
the evolving trends of KGs, thereby enhancing its ability to predict
future developments.

Furthermore, our model’s improvement margin diminishes as
the recall metric threshold 𝑁 is increased, as illustrated in Fig-
ure 6. The x-axis represents the year gap between training and
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Figure 5: Recall@1 performance over 3-year gaps shows CY-
CLE outperforming both the BLINK and the SpEL on contin-
ual and new entities. Performance gains increase with larger
temporal gaps, highlighting the robustness of our approach.
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Figure 6: This figure compares our model with the SpEL
across 3-year gaps in only forward settings. Improvements
on the new and continual entities datasets are depicted by
solid and hollow bars respectively. We observe a consistent
growth in the performance gain for both types of entities
(see regression lines) as the temporal gap increases, demon-
strating the temporal robustness of our approach.

testing datasets, while the y-axis shows our model’s performance
improvement over the SpEL model. Solid bars denote performance
on the new entities dataset and hollow bars on continual entities.
This diminishing effect is likely because at the @64 threshold, the
model needs only to correctly predict one of the top 64 answers,
thus allowing a higher error tolerance. Additionally, our model’s
performance enhancement grows with the year gap, as shown by
the regression lines for both continual and new entities.

6.4 Results on Low-degree Entities and Fairness
Analysis

In Figure 7, we analyze the improvement of our model’s perfor-
mance on entities with different degrees. The model is trained on
the 2019 new entities training set and tested on the test sets from
2019 to 2022. The figure shows the entity’s degree on the x-axis and
the corresponding improvement in model performance compared
to the BLINK model on the y-axis. We observe that our model has
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Figure 7: CYCLE performance improvement over the BLINK
model as the degree of target entities in the relation graph
increases (x-axis). The orange regression line illustrates a
trend where CYCLE, on average, achieves better performance
enhancements, particularly on low-degree entities.

a more pronounced improvement for lower-degree entities. When
facing entities with a relatively high degree and entities with more
neighbors, our model still demonstrates an improvement, although
it is less noticeable.

We hypothesize that this trend is partly due to sparse informa-
tion of low-degree nodes. Such nodes are highly sensitive to new
connections, making graph contrastive learning module especially
effective at integrating new data and adapting to dynamic changes.
This sensitivity is critical, as it allows low-degree nodes to more
effectively capture and utilize new information, improving their
embeddings and adaptability over time.

6.5 Results on Non-temporal datasets
Our model achieves state-of-the-art performance on temporally
evolving GCL-TempEL dataset (see Table 2). In this section, we
evaluate the performance of our model in a traditional setting,
characterized by static (i.e., lacking temporal evolution) EL datasets
without graph-based input. Concretely, Table 3 describes EL results
using recall@𝑁 metric, for our CYCLE model compared to BLINK
and SpEL models on the ZESHEL and WikilinksNED static datasets.
Even without graph-based input and temporal evolution in these
datasets, our model maintains consistent performance on par with
BLINK, underscoring its adaptability.

7 Conclusion and Future Work
This paper introduces CYCLE, a model specifically designed to
use graph contrastive learning to mitigate temporal degradation
in evolving Knowledge Graphs (KGs). The model captures cross-
year changes between entities by utilizing newly added or removed
graph nodes as positive and negative samples in a contrastive learn-
ing framework. We conducted experiments on three Entity Linking
(EL) datasets, setting a new benchmark on the temporally evolv-
ing GCL-TempEL dataset. Specifically, our model achieved a 13.90%
performance improvement over the SpEL model when the time
gap is one year, and this improvement increased to 17.79% as the
gap extended to three years. Additionally, our model demonstrated

Table 3: Performance of CYCLE on EL datasets that do not
contain graph-based input and are static. Our model contin-
ues to exhibit competitive performance.

Dataset Model @1 @4 @8 @16 @32 @64

Zeshel:
Forgotten Realms

BLINK 0.5183 0.7400 0.7950 0.8375 0.8683 0.8942
SpEL 0.5717 0.8092 0.8646 0.8969 0.9373 0.9498
CYCLE 0.5150 0.7423 0.7963 0.8298 0.8676 0.8978

Zeshel:
Lego

BLINK 0.4170 0.6647 0.7548 0.8090 0.8599 0.8841
SpEL 0.4672 0.7216 0.8113 0.8685 0.9197 0.9420
CYCLE 0.4127 0.6726 0.7547 0.8059 0.8628 0.8825

Zeshel:
Star Trek

BLINK 0.3717 0.5798 0.6475 0.7052 0.7563 0.7999
SpEL 0.4316 0.6358 0.7030 0.7574 0.8122 0.8534
CYCLE 0.3749 0.5839 0.6493 0.7083 0.7528 0.7936

Zeshel:
Yugioh

BLINK 0.2828 0.4769 0.5504 0.6094 0.6577 0.6935
SpEL 0.3361 0.5270 0.6056 0.6615 0.7110 0.7529
CYCLE 0.2745 0.4764 0.5476 0.6075 0.6533 0.6946

WikilinksNED
BLINK 0.1721 0.4192 0.5467 0.6505 0.7340 0.7907
SpEL 0.2315 0.4761 0.5976 0.7084 0.7913 0.8414
CYCLE 0.1746 0.4276 0.5657 0.6584 0.7275 0.7934

Average
BLINK 0.3524 0.5761 0.6589 0.7223 0.7752 0.8125
SpEL 0.4076 0.6339 0.7164 0.7785 0.8343 0.8679
CYCLE 0.3503 0.5806 0.6627 0.7220 0.7728 0.8124

competitive performance on static datasets. Looking ahead, we
identify two key areas for future research:

Multimodal Temporal KGs with Contrastive Learning. In
addition to temporal information, TKGs can also contain multi-
modal data, such as text, images, and audio. This multimodal data
can be used further to improve the performance of contrastive learn-
ing for TKGs. For example, a pair of entities with a relationship
in multiple timestamps that are also mentioned in the audio can
be considered a more informative positive sample than a pair of
entities with a relationship in multiple timestamps but not in any
other type of data.

Temporal KGs with Large Language Models. Considering
the challenge of aligning similar concepts across languages where
direct translations often fail to convey identical meanings, using
Large Language Models (LLMs) for aligning conceptually similar
entities in multilingual KGs is a promising direction. This approach
can improve the coherence of these graphs. If entity descriptions
and entity relationships exist at language𝐴, the model could benefit
from these diverse language resources, further improving language
𝐵 accuracy and better preventing temporal degradation.
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