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 a b s t r a c t

Graphs are a widely used paradigm for representing non-Euclidean data, with applications ranging from so-
cial network analysis to biomolecular prediction. While graph learning has achieved remarkable progress, real-
world graph data presents a number of challenges that significantly hinder the learning process. In this survey, 
we focus on four fundamental data-centric challenges: (1) Incompleteness, real-world graphs have missing 
nodes, edges, or attributes; (2) Imbalance, the distribution of the labels of nodes or edges and their struc-
tures for real-world graphs are highly skewed; (3) Cross-domain Heterogeneity, graphs from different do-
mains exhibit incompatible feature spaces or structural patterns; and (4) Dynamic Instability, graphs evolve 
over time in unpredictable ways. Recently, Large Language Models (LLMs) offer the potential to tackle these 
challenges by leveraging rich semantic reasoning and external knowledge. This survey focuses on how LLMs 
can address four fundamental data-centric challenges in graph-structured data, thereby improving the effec-
tiveness of graph learning. For each challenge, we review both traditional solutions and modern LLM-driven 
approaches, highlighting how LLMs contribute unique advantages. Finally, we discuss open research questions 
and promising future directions in this emerging interdisciplinary field. To support further exploration, we 
have curated a repository of recent advances on graph learning challenges: https://github.com/limengran98/
Awesome-Literature-Graph-Learning-Challenges.

1.  Introduction

Graphs provide a flexible and expressive framework for model-
ing complex systems composed of interconnected entities. Unlike grid-
structured data such as images or sequences, graphs encode non-
Euclidean topologies with irregular neighborhood structures and vary-
ing connectivity patterns. To support learning on such structures, graph 
learning aims to derive low-dimensional node or graph-level representa-
tions that preserve both structural dependencies and semantic informa-
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tion from the original graph (Ju et al., 2024a; Khoshraftar & An, 2024; Li 
et al., 2025c; Xia et al., 2021). Due to these representational advantages, 
graph learning has been successfully applied across a wide range of do-
mains, including social network analysis (Yang et al., 2024a), personal-
ized recommendation (Wang et al., 2023b), transportation optimization 
(Rahmani et al., 2023), financial modeling (Motie & Raahemi, 2024), 
and bioinformatics (Xie et al., 2025; Yang et al., 2024b). As a result, 
it has become a foundational technique for extracting knowledge from 
relational data and enabling models to reason over structured domains.
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Fig. 1. The four fundamental challenges emerge of real-world graph complexity: (1) Incompleteness in graphs, where nodes, edges, or attributes are missing, (2) 
Imbalance in graphs, where the distribution of nodes, edges, or labels is highly skewed, (3) Cross-domain heterogeneity in graphs, where graph data from different 
domains exhibit semantic and structural discrepancies, and (4) Dynamic instability in graphs, where graphs undergo dynamic changes in topology, attributes, or 
interactions over time.

Despite this progress, real-world graph data often exhibits complex-
ities, including sparsity, noise, domain divergence, and dynamic evo-
lution, introducing practical difficulties for graph learning (Ju et al., 
2024c). For instance, in social networks, cold-start users may lack suf-
ficient links or profile features, making it difficult to learn reliable rep-
resentations (Wang et al., 2023b). In fraud detection, the data is often 
highly imbalanced, where fraudulent behavior accounts for only a small 
fraction of all activities, and labels are sparse and noisy (Rajput & Singh, 
2022). In smart cities, traffic systems involve heterogeneous and dynam-
ically evolving road networks, posing difficulties for models to adapt to 
changing topologies in real time (Li et al., 2024b; Rahmani et al., 2023; 
Zhang et al., 2025b). As summarized in Fig. 1, these concrete scenar-
ios highlight four fundamental data-centric challenges in real-world 
graphs:

(1) Incompleteness in Graphs An incomplete graph refers to a 
graph where some node or edge information is missing, resulting in 
an incomplete representation of the structure or attributes that fails 
to fully reflect the complexity of the real-world system (Chen et al., 
2022). This challenge typically arises from incomplete data collection, 
missing link information, or outdated knowledge. For example, in social 
networks, missing user attributes-such as age, location, or interests-can 
obscure community boundaries, making it difficult to accurately detect 
user groups or recommend content. Similarly, missing connections be-
tween users may conceal important social ties, weakening the structural 
signals used for clustering or influence analysis. This incompleteness un-
dermines the effectiveness of graph learning.

(2) Imbalance in Graphs A graph is considered imbalanced when 
certain categories or subgraphs contain significantly more nodes or 
edges than others (Liu et al., 2023d). This can lead to some categories 
dominating the graph, while others are left underrepresented (Wang 
et al., 2022). For example, financial transaction networks are character-
ized by containing a large number of legitimate transactions, and only a 
small fraction of fraudulent ones (Liu et al., 2021). Imbalanced training 
data may cause models to overfit to the majority class, thus impacting 
the model’s ability to generalize and recognize the minority class ef-
fectively (Ma et al., 2023). This data imbalance challenge affects many 
graph learning methods, especially those relying on graph convolutional 
networks (Shi et al., 2020).

(3) Cross-Domain Heterogeneity in Graphs Cross-domain hetero-
geneity refers to significant disparities in attributes and structural pat-
terns that arise when graph data are constructed from multiple source 
domains, especially when these domains have different data modali-
ties or exhibit substantial distribution shifts. For instance, road network 
data collected from various cities may exhibit considerable heterogene-
ity, with some cities having grid-like structural patterns, while others 
exhibit radial configurations (Badhrudeen et al., 2022). This issue be-
comes even more critical in the rapidly growing field of graph foun-
dation models (Liu et al., 2025), which aim to develop generalizable 
models capable of handling diverse graphs from different domains, such 
as molecular graphs and citation networks. Cross-domain heterogene-
ity poses additional challenges for graph learning, as diverse attributes 
and structural patterns cannot be easily processed in a unified manner
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(Yan et al., 2024; Zhang et al., 2019c). Additionally, domain discrepan-
cies may distort essential semantic and structural signals, complicating 
the identification of transferable features and limiting the effectiveness 
of graph learning methods (Hassani, 2022; Zhu et al., 2021).

(4) Dynamic Instability in Graphs Dynamic instability in graphs 
refers to continuous and unpredictable changes in node features and 
relationships over time. These may include updates to node attributes, 
alterations in graph structure, or the emergence of new node and edge 
types. Structural changes often involve adding or removing connections 
or reorganizing how nodes interact. For example, in a large-scale knowl-
edge graph like Wikidata, an entity initially labeled as an “athlete” 
might later become classified as a “coach”. This transition entails signif-
icant shifts in both node features and their connections within the graph 
(Zhang et al., 2024b,c). Furthermore, these continuous transformations 
introduce instability, making it difficult for graph learning models to 
adapt effectively. As a result, performance may degrade in tasks such 
as node classification, link prediction, and node representation learning 
(Kazemi et al., 2020). A deeper understanding of these forms of dynamic 
instability can facilitate the development of more robust and adaptive 
graph learning methods, crucial for accurately modeling the evolving 
real-world graphs.

A variety of graph learning methods have been developed to address 
these challenges, achieving notable success in specific contexts. For in-
stance, graph completion algorithms (Cai et al., 2010) and graph autoen-
coders (Chen et al., 2022) have been employed to handle missing data; 
techniques like GraphSMOTE (Zhao et al., 2021) and re-weighted loss 
functions (Zhang et al., 2022) are commonly used to mitigate data im-
balance; and graph domain adaptation methods, including adversarial 
regularization (Shen et al., 2020; Zhang et al., 2019c) and distribution 
alignment (Liu et al., 2023b; Zhu et al., 2021), have been explored to ad-
dress cross-domain heterogeneity. Additionally, dynamic graph models 
such as EvolveGCN (Pareja et al., 2020) and DyRep (c)Trivedi, Fara-
jtabar) have been proposed to model evolving graph structures. While 
these methods are effective within their respective scopes, they often 
rely on task-specific designs and require significant domain expertise.

In contrast, the emergence of large language models (LLMs) has 
opened up new opportunities for mitigating these fundamental chal-
lenges (Cui et al., 2025; Jeong et al., 2025; Ong et al., 2025). With 
their strong representational capacity, contextual reasoning abilities, 
and generalization potential, LLMs can extract rich semantic patterns 
from heterogeneous and noisy data. These capabilities enable LLMs to 
augment graph data by inferring missing information (Brasoveanu et al., 
2023), synthesizing data for underrepresented classes (Yu et al., 2025), 
aligning heterogeneous attributes (Liu & Wu, 2023), and capturing tem-
poral evolution or structural changes in dynamic graphs (Margatina 
et al., 2023). By addressing these issues, LLMs offer a promising comple-
ment to traditional graph learning approaches. To reflect this growing 
interest, Fig. 2 shows publication trends over the past decade (up to 
July 2025) related to “Graph Learning” and “LLM-based Graph Learn-
ing”. The statistics indicate that not only has graph learning become an 
increasingly important topic, but the proportion of research exploring 
the integration of LLMs into graph learning has also been steadily rising.

This survey provides a comprehensive review of current research 
at the intersection of graph learning and large language models, cen-
tered on the four fundamental challenges introduced above. To ensure 
broad coverage, we performed an extensive literature search across ma-
jor databases (arXiv, ACM Digital Library, IEEE Xplore, Elsevier, and 
Springer, etc.) using keyword combinations such as “LLMs”, “graph 
learning”, “incompleteness”, “imbalance”, “heterogeneity”, “dynamic 
graphs”. We focus on recent publications (primarily 2015-2025) in top 
machine learning, data mining, and NLP venues, as well as relevant 
preprints. This survey includes papers that meet at least one of the fol-
lowing criteria: (1) the work explicitly addresses one of the four fun-
damental challenges in graph learning, or (2) the proposed solution in-
corporates LLMs as a central component. Based on these criteria, we 
initially collected and reviewed over 1000 relevant papers. We then 

Fig. 2. Annual publication trends in Graph Learning from January 2015 to July 
2025, with a highlighted subset of works related to LLMs. The blue bars rep-
resent Graph Learning (non-LLM) publications and the pink segments repre-
sent LLM-related publications; the stacked height indicates the total per year. 
The percentages above each bar denote the proportion of LLM-related pa-
pers within the total for that year. Data sourced from Google Scholar (https:
//scholar.google.com).

categorized them according to the type of challenge addressed and the 
strategies employed, ultimately selecting a curated set of over 380 rep-
resentative works. For each challenge, we briefly discuss conventional 
(non-LLM) techniques to provide background context, while our pri-
mary focus is to highlight the novel contributions and advantages in-
troduced by LLM-based approaches.

The structure of the paper is organized as follows: Section 2 pro-
vides an analysis and summary of traditional methods and LLM-based 
approaches for handling graph learning challenges. Section 3, building 
on the existing body of research, proposes new technical paths and solu-
tions. Section 4 discusses the potential future directions for graph learn-
ing research. Finally, Section 5 concludes the paper.

2.  Overview of graph learning and LLMs

2.1.  Graph notation definition

We denote a graph as  = ( ,  ,𝐗𝑉 ,𝐗𝐸 ), where  is the set of 𝑛
nodes,  is the set of edges, 𝐗𝑉 ∈ ℝ||×𝑑𝑣  is the node feature ma-
trix, 𝐗𝐸 ∈ ℝ||×𝑑𝑒  is the edge feature matrix, and 𝐀 ∈ ℝ𝑛×𝑛 is the ad-
jacency matrix, where 𝐀𝑖𝑗 = 1 if (𝑣𝑖, 𝑣𝑗 ) ∈  . The degree matrix is 𝐃
with 𝐃𝑖𝑖 =

∑

𝑗 𝐀𝑖𝑗 . The normalized graph Laplacian is defined as: 𝐋 =
𝐈 − 𝐃−1∕2𝐀𝐃−1∕2.

The types of graph data involved in this work can be broadly cate-
gorized as follows. Homogeneous graph refers to a graph in which all 
nodes and edges belong to the same type. Heterogeneous graph refers 
to a graph where nodes and/or edges belong to multiple types, such 
as user/item nodes or different edge relations. Attributed graph refers 
to a graph where nodes and/or edges are associated with real-valued 
features, i.e., 𝐗𝑉  and/or 𝐗𝐸 are non-empty. Knowledge graph refers to 
a directed, multi-relational graph represented as triplets (ℎ, 𝑟, 𝑜), where 
ℎ ∈  is the head entity, 𝑜 ∈  is the object entity, and 𝑟 ∈  is a rela-
tion type. Dynamic graph refers to a sequence of time-evolving graphs 
{𝑡}𝑇𝑡=1 in which the node set, edge set, or features may change over 
time.

2.2.  Graph learning methods

Graph learning refers to a family of machine learning techniques 
designed specifically to analyze and learn from graph-structured data 
(Khoshraftar & An, 2024; Li et al., 2023c; Xia et al., 2021). Unlike data in 
Euclidean domains, graphs encode relationships between entities, and 
thus graph learning algorithms must leverage both node features and 
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Fig. 3. Comparison between traditional graph representation learning and 
emerging paradigms that leverage LLMs. (a) Conventional graph learning re-
lies on GNNs to encode structural information into node or graph-level repre-
sentations. (b) In LLM-based approaches, LLMs can enhance graph structures 
using auxiliary text (top), extract semantic representations directly from graph 
inputs (middle), or generate task-specific answers through reasoning over graph 
structures (bottom).

the graph topology. The goal is often to learn vector representations for 
nodes, edges, or entire subgraphs/graphs that capture their structural 
role and feature information, so that these embeddings can be used for 
downstream tasks, as shown in Fig. 3(a).

Traditional Graph Learning Methods: A wide range of traditional 
techniques have been developed to learn graph representations. Early 
methods such as spectral clustering (Ng et al., 2001) and LINE (Tang 
et al., 2015) learn embeddings by factorizing adjacency or similarity 
matrices, capturing global connectivity patterns. Random-walk-based 
approaches like DeepWalk (Perozzi et al., 2014), Node2Vec (Grover & 
Leskovec, 2016), and metapath2vec (Dong et al., 2017) model local con-
texts through node sequences generated by truncated walks, offering 
better scalability and flexibility. In parallel, autoencoder-based models 
aim to reconstruct graph structures from latent representations. Notable 
examples include Graph Autoencoder (GAE) and Variational Graph Au-
toencoder (VGAE) (Kipf & Welling, 2016), which adopt graph convo-
lutional encoders with deterministic or probabilistic decoders. Further 
developments such as Adversarially Regularized Graph Autoencoders 
(ARGA) (Pan et al., 2018) and Graph Attention Autoencoders (GATE) 
(Salehi & Davulcu, 2019) introduce adversarial training and attention 
mechanisms to improve expressiveness and robustness. Despite their 
foundational role, traditional methods often fall short in handling the 
complexity of real-world graph data.

Graph Neural Networks: The advent of graph neural networks 
(GNNs) marked a significant change by enabling end-to-end learning 
directly on graph structures. Spectral GNNs, starting with Bruna et al. 
(2014), were initially limited by high computational costs, which were 
mitigated by subsequent works using polynomial approximations (Def-
ferrard et al., 2016). The introduction of Graph Convolutional Networks 
(GCNs) by Kipf and Welling (2017) popularized neighborhood aggrega-
tion in semi-supervised settings. Further developments such as Graph-
SAGE (Hamilton et al., 2017), GAT (Veličković et al., 2018), SGC (Wu 
et al., 2019), and GIN (Xu et al., 2019) improved the expressiveness, 
scalability, and adaptability of GNNs.

More recently, two powerful approaches have emerged in graph 
learning: contrastive learning and Transformer-based architectures. 
Graph contrastive learning methods like DGI (Velickovic et al., 2019), 
GraphCL (You et al., 2020), and HeCo (Wang et al., 2021c) focus on 
learning robust representations by maximizing consistency across mul-
tiple views of the same graph. Transformer-inspired models, such as GT 
(Shi et al., 2021) and GraphGPS (Rampášek et al., 2022), introduce 
global self-attention and hybrid message-passing to model long-range 
dependencies and scale across graph types.

While graph learning techniques have shown remarkable success in 
modeling relational structures and topological dependencies, they of-
ten fall short in capturing high-level semantics and leveraging external 
unstructured data (Ren et al., 2024b; Yang et al., 2024d). These limi-
tations become more pronounced when dealing with real-world graphs 
that are frequently incomplete, imbalanced, heterogeneous across do-
mains, or dynamically evolving over time. These challenges have mo-
tivated a growing interest in integrating graph models with powerful 
language-based representations, such as LLMs, which offer strong se-
mantic reasoning capabilities and the flexibility to incorporate external 
knowledge into the graph learning pipeline.

2.3.  LLMs for graph learning

LLMs are a class of deep neural networks pretrained on massive text 
corpora to capture the statistical and semantic structure of natural lan-
guage (Chang et al., 2024; Naveed et al., 2023). By learning distributed 
token representations and contextual relationships, LLMs achieve im-
pressive performance across a broad spectrum of NLP tasks, including 
text generation (Li et al., 2024a), question answering (Singhal et al., 
2025), and machine translation (Moslem et al., 2023).

The development of LLMs reflects a paradigm shift from task-specific 
pipelines to general-purpose language understanding. Early NLP relied 
on symbolic or statistical models (e.g., HMMs (Rabiner, 1989), CRFs 
(Lafferty et al., 2001)), which were constrained by domain specificity 
and limited context. The introduction of the Transformer architecture 
(Vaswani et al., 2017) enabled global attention and deep sequence mod-
eling, which laid the foundation for modern LLMs. Subsequent mile-
stones such as BERT (Devlin et al., 2019), GPT-3 (Brown et al., 2020), 
and ChatGPT (Ouyang et al., 2022) progressively advanced context 
modeling, few-shot reasoning, and conversational alignment. Recent 
systems like GPT-4 (Achiam et al., 2023) and DeepSeek-MoE (Dai et al., 
2024) further scale capacity and introduce modular expert routing, en-
abling more efficient and multimodal learning.

Despite being originally designed for natural language, LLMs ex-
hibit emergent capabilities-such as abstract reasoning, flexible gener-
alization, and heterogeneous input integration-that extend far beyond 
textual tasks. As shown in Fig. 3(b), LLMs can complement graph learn-
ing by generating structural hypotheses (Zhang et al., 2024g), enriching 
semantic content (Brasoveanu et al., 2023), and aligning cross-domain 
knowledge (Liu & Wu, 2023). Viewed through the lens of graph learn-
ing, these abilities make LLMs well-suited for enhancing data quality 
and robustness in graph-based applications:

Semantic reasoning: By leveraging rich contextual understanding, 
LLMs can infer latent or missing information from incomplete inputs. In 
the graph domain, this enables the imputation of missing node or edge 
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Fig. 4. Illustrations of three representative tasks addressing graph incomplete-
ness. Robust Graph Learning (left) handles noisy or missing attributes to en-
sure stable performance. Few-shot Graph Learning (middle) aims to generalize 
from limited labeled nodes or subgraphs. Knowledge Graph Completion (right) 
focuses on inferring missing links between entities based on observed relation-
ships.

attributes, the prediction of potential links, and the interpretation of 
sparsely connected substructures. Such capabilities directly address the 
challenge of incompleteness in real-world graphs, where data sparsity 
or noise is common (Brasoveanu et al., 2023).

Cross-domain and cross-modal alignment: LLMs are trained on di-
verse sources of knowledge and can serve as translators between incom-
patible domains or feature spaces. This makes them particularly useful 
in cross-domain heterogeneous graphs (Liu & Wu, 2023)-for example, 
aligning product graphs across e-commerce platforms that differ in at-
tribute schemas, category taxonomies, and language conventions. LLMs 
can bridge such gaps by reasoning over textual descriptions and contex-
tual cues to identify semantically equivalent items across domains.

Generative augmentation: As generative models, LLMs can syn-
thesize new graph components-such as nodes, edges, or subgraphs-
conditioned on textual or structural prompts. This ability can be used to 
create balanced training samples for underrepresented classes, thereby 
mitigating data imbalance (Yu et al., 2025), or to simulate hypotheti-
cal future graph states for handling dynamic instability (Zhang et al., 
2024g).

In the following sections, we examine each of the four fundamental 
data-centric challenges in turn, analyzing how LLMs have been used to 
mitigate them, and what open questions remain at this intersection.

3.  Current techniques for graph challenges

In this section, we discuss each of the four core challenges in detail. 
For each challenge, we first formalize the problem. We then review rep-
resentative traditional and LLM-enhanced solutions to provide context.

3.1.  Incompleteness in graphs

In the real world, graph data is often incomplete due to missing node 
attributes, edges or labels, which significantly impacts the accuracy and 
generalization ability of graph models. By leveraging LLMs for graph 
data completion and the inference of missing information, the perfor-
mance of graph learning models can be significantly improved, even in 
scenarios with incomplete or missing information. We categorize cur-
rent approaches to incomplete graphs into three major directions (as 
shown in Fig. 4): (1) Robust Graph Learning, which focuses on making 
models resilient to missing data; (2) Few-Shot Graph Learning, which 
addresses scenarios with extremely limited labeled data or structure by 
transferring knowledge; and (3) Knowledge Graph Completion, which is 
a prominent sub-area dealing with inferring missing facts in large knowl-
edge graphs. The relevant references and categorization are presented 
in Table 1.

3.1.1.  Robust graph learning
Robust graph learning methods aim to maintain model performance 

even when the input graph is noisy or partially observed. Traditional 
GNNs often degrade in accuracy if key attributes are missing or if the 
graph is sparsely connected, because the iterative message passing has 

less information to propagate. Therefore, researchers have proposed spe-
cialized techniques to make graph learning robust to incompleteness.

(1) Traditional Methods for Robust Graph Learning Early ef-
forts in robust graph learning focused on imputing missing values using 
global interpolation techniques under low-rank assumptions. For exam-
ple, matrix completion methods (Cai et al., 2010; Chen et al., 2019a; 
Huang et al., 2019; Şimşek & Jensen, 2008) estimate missing attributes 
based on the global structure of the data. GraphRNA (Huang et al., 2019) 
introduces Attribute Random Walk (AttriWalk), modeling attributes as 
a bipartite graph to capture attribute-structure interactions, thereby en-
hancing local adaptability and robustness in heterogeneous environ-
ments. ARWMF (Chen et al., 2019a) combines random walks with ma-
trix factorization and mutual information to improve unsupervised node 
embedding under noisy conditions.

With the rise of deep learning, more sophisticated generative mod-
els were developed to overcome the linear assumptions of early meth-
ods (Chen et al., 2025, 2022; Li et al., 2025a, 2024c,d; Morales-Alvarez 
et al., 2022; Peng et al., 2024b; Tu et al., 2022; Xia et al., 2024a; Yoo 
et al., 2022). SAT (Chen et al., 2022) enhances robustness by decou-
pling structure and attribute signals via shared latent spaces and distri-
bution alignment. SVGA (Yoo et al., 2022) imposes strong probabilis-
tic regularization on latent variables to prevent overfitting when fea-
tures are sparse or unreliable. Models like ITR (Tu et al., 2022) and 
VISL (Morales-Alvarez et al., 2022) progressively refine latent variables 
or inter-variable structures using topological cues, improving resilience 
against structural noise. More recently, methods like MATE (Peng et al., 
2024b) and AIAE (Xia et al., 2024a) exploit multi-view and multi-scale 
generation strategies to stabilize representation learning under incom-
plete or corrupted input. CSAT (Li et al., 2024d) incorporates con-
trastive learning and Transformers to detect communities under noisy 
or weak supervision, further enhancing robustness through auxiliary
signals.

Another line of work improves model robustness through dynamic 
inference mechanisms that rely on structural priors like homophily and 
community consistency (Li et al., 2025b; Rossi et al., 2022; Um et al., 
2023). For instance, FP (Rossi et al., 2022) integrates Dirichlet energy 
minimization with graph diffusion to achieve stable feature recovery. 
PCFI (Um et al., 2023) assigns confidence scores to feature channels, 
allowing uncertainty-aware propagation. ARB (Li et al., 2025b) ad-
dresses the cold-start problem by introducing virtual edges and rede-
fined boundary conditions to improve propagation in sparse or poorly 
connected graphs. A notable advantage of such propagation-based meth-
ods is their parameter-free nature, making them highly adaptable and 
easily integrated with LLM-based pipelines for downstream reasoning 
tasks. To tackle the cold-start problem in node representation learn-
ing, Cold Brew (Zheng et al., 2021) introduced a feature contribution 
ratio metric to guide teacher-student distillation, uniquely encoding 
topological sparsity as a dynamic temperature coefficient. CTAug (Wu 
et al., 2024b) employs subgraph-aware contrastive learning to preserve 
dense subgraph priors, significantly enhancing representation learning 
in dense graphs.

These methods significantly enhance the predictive capabilities of 
graph data in scenarios with missing attributes by jointly modeling, 
employing variational inference, and optimizing multi-source informa-
tion. Nevertheless, three challenges remain: (1) coupling optimization of 
completion and prediction dramatically increases training complexity; 
(2) latent-space completion methods are sensitive to prior assumptions; 
(3) efficient incremental mechanisms are lacking for dynamic attribute 
completion.

(2) LLM-enhanced methods Recently, researchers have begun ex-
ploring the deep integration of semantic reasoning and incomplete 
graph learning. Methods based on LLMs (Chai et al., 2023; Chen et al., 
2023c; Fang et al., 2025; Sun et al., 2023; Wang et al., 2024c; Yu et al., 
2025) pioneer a new paradigm that combines semantic completion and 
structural refinement, leveraging the strong generative and reasoning 
capabilities of LLMs.

Expert Systems With Applications 298 (2026) 129643 

5 



M. Li et al.

Table 1 
LLM-based methods for handling incompleteness in graphs, grouped by domain and incomplete type, with representative methods, datasets, metrics, and down-
stream tasks.
 Domain Incompleteness Method Typical Datasets Common Metrics Downstream Tasks

Robust Graph 
Learning

Node LLM4NG (Yu 
et al., 2025)

Cora (McCallum et al., 2000), PubMed (Prithviraj et al., 
2008), ogbn-arxiv (Hu et al., 2020)

Accuracy Node Classification

LLM-TAG (Sun 
et al., 2023)

Cora (McCallum et al., 2000), Citeseer (Giles et al., 1998), 
PubMed (Prithviraj et al., 2008), Arxiv-2023 (He et al., 
2024a)

Accuracy Node Classification

SPLLM (Fang 
et al., 2025)

PeMS03 (Zhang et al., 2021), PeMS04 (Zhang et al., 2021), 
PeMS07 (Zhang et al., 2021)

MAE, RMSE, MAPE Spatiotemporal 
Forecasting

Label LLMGNN (Chen 
et al., 2023c)

Cora (McCallum et al., 2000), Citeseer (Giles et al., 1998), 
PubMed (Prithviraj et al., 2008), ogbn-arxiv (Hu et al., 
2020), ogbn-products (Hu et al., 2020), Wikics (Mernyei & 
Cangea, 2020)

Accuracy Node Classification

Mixed GraphLLM (Chai 
et al., 2023)

Synthetic Data (Wang et al., 2023a) Exact Match 
Accuracy

Graph Reasoning

PRO-
LINK (Wang 
et al., 2024c)

FB15k237 (Toutanova & Chen, 2015), Wikidata68K 
(Gesese et al., 2022), NELL-995 (Xiong et al., 2017)

MRR, Hits@N Knowledge Graph 
Completion

UnIMP (Wang 
et al., 2025)

BG (Asuncion et al., 2007), ZO (Asuncion et al., 2007), PK 
(Asuncion et al., 2007), BK (Asuncion et al., 2007), CS 
(Asuncion et al., 2007), ST (Asuncion et al., 2007), PW 
(Asuncion et al., 2007), BY (Asuncion et al., 2007), RR 
(Asuncion et al., 2007), WM (Asuncion et al., 2007)

RMSE, MAE Data Imputation

Few-Shot Graph 
Learning

Structure LinkGPT (He 
et al., 2024b)

AmazonSports (McAuley et al., 2015), Amazon-Clothing 
(McAuley et al., 2015), MAG-Geology (Sinha et al., 2015), 
MAG-Math (Sinha et al., 2015)

MRR, Hits@N Link Prediction

Anoma-
lyLLM (Liu 
et al., 2024d)

UCI Messages (Opsahl & Panzarasa, 2009), Blogcatalog 
(Tang & Liu, 2009), T-Finance (Tang et al., 2022), T-Social 
(Tang et al., 2022)

AUC Anomaly Detection

Mixed LLMDGCN (Li 
et al., 2024h)

Cora (McCallum et al., 2000), Citeseer (Giles et al., 1998), 
PubMed (Prithviraj et al., 2008), Religion (Rosenthal & 
McKeown, 2016)

Accuracy Node Classification

HeGTa (Jin 
et al., 2024)

IM-TQA (Zheng et al., 2023a), WCC (Ghasemi-Gol & 
Szekely, 2018), HiTab (Cheng et al., 2021), WTQ (Pasupat 
& Liang, 2015), TabFact (Chen et al., 2019b)

Macro-F1, Accuracy Table Understanding

FlexKBQA (Li 
et al., 2024i)

GrailQA (Gu et al., 2021), WebQSP (Yih et al., 2016), KQA 
Pro(Cao et al., 2022)

Exact Match, F1, 
Accuracy

Knowledge Graph 
Question Answering

KGQG (Zhao 
et al., 2024a)

WebQuestions (Kumar et al., 2019), PathQuestions (Zhou 
et al., 2018)

BLEU-4, ROUGE-L, 
Hits@N

Knowledge Graph 
Question Answering

Knowledge Graph 
Completion

Node LLM-
KGC (b)Sehwag, 
Papasotiriou)

ILPC (Galkin et al., 2022) MRR, Hits@N Knowledge Graph 
Completion

GS-KGC (Yang 
et al., 2025)

WN18RR (Dettmers et al., 2018), FB15k-237 (Toutanova & 
Chen, 2015), FB15k-237N (Lv et al., 2022), ICEWS14 
(García-Durán et al., 2018), ICEWS05-15 (Li et al., 2021b)

Hits@N Knowledge Graph 
Completion

GLTW (Luo 
et al., 2025)

FB15k-237 (Toutanova & Chen, 2015), WN18RR (Dettmers 
et al., 2018), Wikidata5M (Vrandečić & Krötzsch, 2014)

MRR, Hits@N Link Prediction

Label KGs-LLM (Carta 
et al., 2023)

Wikipedia Carta et al. (2023) F1, Precision, Recall Knowledge Graph 
Generation

Mixed FSKG (Brasoveanu 
et al., 2023)

WN18RR Dettmers et al. (2018), FB15k-237 (Toutanova & 
Chen, 2015)

MRR, Hits@N Knowledge Graph 
Completion

KGLLM (Yao 
et al., 2023)

WN11 (Socher et al., 2013), FB13 (Socher et al., 2013), 
WN18RR (Dettmers et al., 2018), YAGO3-10 (Dettmers 
et al., 2018)

Accuracy, MRR, 
Hits@N

Link Prediction, 
Knowledge Graph 
Completion

KICGPT (Wei 
et al., 2023)

FB15k-237 (Toutanova & Chen, 2015), WN18RR (Dettmers 
et al., 2018)

MRR, Hits@N Link Prediction

RL-LLM (Chen 
et al., 2023a)

Electronics, Instacart (Chen et al., 2023a) Precision, Recall, 
Accuracy

Knowledge Graph 
Completion

GoG (Xu et al., 
2024b)

Synthetic Data (Xu et al., 2024b) Hits@N Knowledge Graph 
Question Answering

KoPA (Zhang 
et al., 2024f)

UMLS (Yao et al., 2019), CoDeX-S (Lv et al., 2022), 
FB15K-237N (Lv et al., 2022)

F1, Precision, Recall, 
Accuracy

Knowledge Graph 
Completion

LLMKG (Iga & 
Silaghi, 2024)

Templates Easy (Iga & Silaghi, 2024), Templates Hard (Iga 
& Silaghi, 2024)

Strict Metrics, 
Flexible Metrics

Knowledge Graph 
Completion

DIFT (Liu et al., 
2024e)

WN18RR (Dettmers et al., 2018), FB15k-237 (Toutanova & 
Chen, 2015)

MRR, Hits@N Link Prediction, 
Knowledge Graph 
Completion

CP-KGC (Yang 
et al., 2024c)

WN18RR (Dettmers et al., 2018), FB15k-237 (Toutanova & 
Chen, 2015), UMLS (Yao et al., 2019)

MRR, Hits@N Knowledge Graph 
Completion

MuKDC (Li 
et al., 2024f)

NELL (Mitchell et al., 2018), Wiki (Vrandečić & Krötzsch, 
2014)

MRR, Hits@N Knowledge Graph 
Completion

Expert Systems With Applications 298 (2026) 129643 

6 



M. Li et al.

Fig. 5. The framework addresses incomplete graph structures by integrating 
structural signals from GNNs and semantic priors from LLMs. The “Align / Fu-
sion / Distillation” module enables the model to compensate for missing graph 
information by leveraging textual context, resulting in enriched and unified 
node attribute/edge/label representations.

Fig. 5 illustrates how LLMs can extract domain-specific knowledge 
and use it to compensate for missing nodes, edges, or attributes. For 
example, Sun et al. (2023) demonstrate that LLMs can infer missing 
nodes and edges by recognizing semantic similarities between entities. 
In this way, the model does not just “guess” a connection statistically, 
but proposes links that are meaningful in the real world. Building on 
this idea, LLM4NG (Yu et al., 2025) generates new, contextually relevant 
nodes, which is especially helpful in few-shot settings where the graph is 
very sparse. Both methods show that LLMs can enrich incomplete graphs 
more effectively than traditional imputation. Meanwhile, SPLLM (Fang 
et al., 2025) focuses on traffic sensor networks, where missing values 
break both spatial and temporal dependencies. By combining spatiotem-
poral GCNs with LLM fine-tuning, and incorporating external knowledge 
such as road maps or weather data, it achieves more reliable predictions. 
Similarly, UnIMP (Wang et al., 2025) works on tabular data by treating 
it as a hypergraph and using LLMs to fill in missing values, even when 
the data is semantically or structurally heterogeneous.

To further close the semantic gap introduced by graph incomplete-
ness, several works propose end-to-end frameworks combining LLMs 
and graph models. For instance, GraphLLM (Chai et al., 2023) intro-
duces a unified architecture where a graph encoder maps node features 
into the LLM’s semantic space, enabling it to reason over incomplete 
or noisy node attributes using attention-gated fusion of structure and 
context. This helps, for example, in citation networks or recommenda-
tion systems where node metadata may be sparse or outdated. PRO-
LINK (Wang et al., 2024c) enhances inductive reasoning on low-resource 
knowledge graphs by generating structural prompts and using LLMs to 
fill in gaps from limited graph and text data - particularly valuable in 
biomedical or emerging domains with sparse curation. Lastly, LLMGNN 
(Chen et al., 2023c) proposes a semi-supervised approach where LLMs 
annotate a small subset of nodes, helping GNNs generalize from mini-
mal labeled data - addressing the classic label incompleteness challenge 
in large-scale graphs.

3.1.2.  Few-shot graph learning
Few-shot learning (FSL) deals with scenarios where very few labeled 

examples are available for training, or where a graph has only a handful 
of nodes/edges in a particular class or subset of interest. This is related 
to incompleteness in that labels can be viewed as a type of missing in-
formation.

(1) Traditional Methods for Few-Shot Learning
FSL in graph domains aims to generalize effectively from limited 

labeled samples, addressing not only label scarcity but also structural 
issues such as missing links and long-tail relations (Qian et al., 2021; 
Sheng et al., 2020; Xiong et al., 2018; Yao et al., 2020; Zhang et al., 

2020). Early approaches primarily focused on explicitly modeling local 
graph structures and relational semantics under low-resource settings. 
For instance, Gmatching (Xiong et al., 2018) pioneered the integration 
of single-hop neighborhood information with relation prototype match-
ing, providing a foundation for rare relation prediction. Building on this, 
GFL (Yao et al., 2020) established a transferable metric space by project-
ing auxiliary knowledge into the target domain, improving cross-graph 
adaptability.

Subsequent works moved toward more sophisticated meta-learning 
strategies. FSRL (Zhang et al., 2020) introduced a heterogeneous 
relation meta-learning framework that decouples relation semantics 
through a reference representation generator, enabling better han-
dling of heterogeneous relation types. Complementing this seman-
tic focus, FAAN (Sheng et al., 2020) designed an adaptive encoder-
aggregator mechanism to dynamically weight entity-reference contri-
butions, thereby producing fine-grained semantic representations that 
significantly enhance few-shot knowledge graph completion. Extending 
FSL techniques to real-world applications, MetaHG (Qian et al., 2021) 
demonstrated the utility of meta-learning in heterogeneous environ-
ments by detecting drug trafficking on Instagram.

Despite these advances, traditional FSL methods remain constrained 
by hand-crafted architecture designs, often lacking efficiency when deal-
ing with large, complex graph structures and exhibiting limited capabil-
ity for structured and interpretable reasoning.

(2) Few-Shot Learning in LLMs Few-shot learning has emerged as 
a natural strength of LLMs, enabling them to handle graph-related tasks 
with limited labeled data by leveraging rich prior knowledge from pre-
training. Recent work demonstrates their effectiveness in diverse sce-
narios such as graph classification (Li et al., 2024h), link prediction (He 
et al., 2024b), anomaly detection (Liu et al., 2024d), table understand-
ing (Jin et al., 2024), and knowledge graph question answering (KGQA) 
(Li et al., 2024i; Zhao et al., 2024a). For instance, LLMDGCN (Li et al., 
2024h) incorporates degree-aware prompt tuning with graph-encoded 
positional embeddings, enabling both node classification and edge re-
covery in low-label settings. In link prediction, LinkGPT (He et al., 
2024b) combines instruction tuning with retrieval-based re-ranking to 
enhance reasoning under sparse supervision. AnomalyLLM (Liu et al., 
2024d) integrates dynamic-aware encoding and prototype-based edge 
reprogramming for improved detection in dynamic graphs. Beyond 
pure graph tasks, HeGTa (Jin et al., 2024) aligns table semantics with 
LLM knowledge via heterogeneous graph-enhanced soft prompts, while 
FlexKBQA (Li et al., 2024i) and a zero-shot KGQA approach (Zhao et al., 
2024a) reformulate KB queries into natural language to generate syn-
thetic training data or reduce reliance on full supervision. Collectively, 
these results indicate that LLMs can generalize to novel graph tasks with 
minimal examples, acting as strong priors that bridge missing or noisy 
information.

In summary, while few-shot graph learning remains challenging, 
LLMs act as few-shot learners by nature - they can leverage their pre-
trained knowledge to make sense of novel tasks with limited data. Re-
sults show that even with minimal graph information, an LLM can pro-
pose connections or classifications that align with human knowledge, 
essentially providing a powerful prior to the graph model.

3.1.3.  Knowledge graph completion
Incompleteness is inherent in knowledge graphs: no knowledge base 

is ever complete. The development of knowledge graph completion 
(KGC) revolves around the core challenge of structure-semantics fusion, 
forming a progressive innovation trajectory from fundamental approach 
exploration to multimodal collaboration. LLMs, with their strong lan-
guage understanding and reasoning capabilities, demonstrate great po-
tential in addressing long-tail challenges, reducing annotation burdens, 
and handling incomplete graph data (Brasoveanu et al., 2023; Carta 
et al., 2023; Chen et al., 2023a; Iga & Silaghi, 2024; Li et al., 2024f; 
Liu et al., 2024e; b)Sehwag, Papasotiriou; Wei et al., 2023; Xu et al., 
2024b; Yang et al., 2024c, 2025; Yao et al., 2023; Zhang et al., 2024f).

Expert Systems With Applications 298 (2026) 129643 

7 



M. Li et al.

Early explorations of LLM-driven KGC primarily focused on convert-
ing triples into natural language sequences to verify whether generative 
LLMs could address incompleteness effectively. FSKG (Brasoveanu et al., 
2023) exemplifies this trend by introducing a generation-refinement 
pipeline that mitigates long-tail sparsity through staged generation. 
Building on this concept, MuKDC incorporated multi-stage knowledge 
distillation to generate coherent supplementary triples, further im-
proving the coverage of long-tail relations. Extending beyond gener-
ation quality, KGs-LLM (Carta et al., 2023) demonstrated that zero-
shot prompting, even without external knowledge, can iteratively ex-
tract graph components, thereby reducing annotation costs and scal-
ing efficiently to domain-specific datasets. While these methods vali-
dated the feasibility of text-based KGC, KGLLM (Yao et al., 2023) fur-
ther showed that such reformulation enables lightweight fine-tuning 
of smaller LLMs like LLaMA-7B, achieving competitive triple classifi-
cation and relation prediction. Addressing the persistent challenge of 
long-tail entities, KICGPT (Wei et al., 2023) integrated a triple-based 
retriever with contextual prompting, directly encoding structural cues 
into LLM inputs. This approach avoids additional training while yield-
ing strong few-shot performance, thus highlighting the efficiency of 
retrieval-augmented prompting in KGC.

To mitigate the structural information loss inherent in purely text-
based approaches, researchers have developed prompt encoding strate-
gies that embed richer graph context. RL-LLM (Chen et al., 2023a) 
applied few-shot learning with multi-prompt optimization for relation 
prediction, showing that even minimal labeled data can yield com-
petitive results in e-commerce KGs. Expanding the reasoning process, 
GoG (Xu et al., 2024b) proposed a “think-search-generate” pipeline, en-
abling the synthesis of new triples without additional training, which 
strengthens reasoning over incomplete graphs. Complementing this, 
LLM-KGC (b)Sehwag, Papasotiriou) fused ontology and graph structure 
directly into prompts, aligning topological and semantic information to 
improve inductive reasoning. Further enhancing structure-aware infer-
ence, KoPA (Zhang et al., 2024f) introduced a knowledge prefix adapter 
to inject structural signals during LLM reasoning, thereby improving 
logical consistency in KGC predictions. These works collectively high-
light a shift from simple text reformulation toward structurally enriched 
prompting, aiming to bridge the gap between LLM semantic priors and 
graph topology.

Building upon these prompting and structural integration advances, 
recent research has optimized LLM-graph fusion for few-shot KGC, entity 
alignment, and robustness in heterogeneous settings. MuKDC (Li et al., 
2024f) extended its earlier generation framework by incorporating mul-
timodal knowledge and consistency evaluation, boosting performance 
on long-tail few-shot tasks. In parallel, LLMKG (Iga & Silaghi, 2024) 
demonstrated that carefully engineered prompts allow both Mixtral-
8x7b and GPT-4 to perform competitively in zero- and one-shot KGC 
across diverse metrics. Addressing entity alignment, DIFT (Liu et al., 
2024e) combined lightweight models with discriminative prompts to 
prevent alignment drift while improving overall KGC accuracy. In han-
dling semantic ambiguity, CP-KGC (Yang et al., 2024c) leveraged con-
textually adaptive prompts to disambiguate polysemous entities, partic-
ularly in quantized LLMs. Moving toward deeper structural integration, 
GLTW (Luo et al., 2025) fused Graph Transformers with LLMs to jointly 
capture local and global patterns, while GS-KGC (Yang et al., 2025) em-
ployed subgraph-based question answering with negative sampling to 
enhance missing triple identification. Together, these frameworks sig-
nal a transition from isolated prompt design to holistic, multimodal, 
and structure-aware LLM-graph systems.

Overall, LLMs bring in a semantic understanding of the KG elements, 
which is valuable because KGs often have textual labels for entities/re-
lations that carry meaning. LLMs leverage this to make more informed 
predictions, especially when data is sparse or the pattern is not purely 
structural but semantic.

3.1.4.  Evaluation for handling incompleteness in graphs
We summarize the existing evaluation pipeline of LLM-based meth-

ods for incomplete graph learning, covering benchmark datasets, eval-
uation metrics, and downstream tasks (see Table 1).

Across the reviewed methods, commonly used benchmark datasets 
include Cora (McCallum et al., 2000), Citeseer (Giles et al., 1998), 
PubMed (Prithviraj et al., 2008), and ogbn-arxiv (Hu et al., 2020) 
for node classification tasks. These are citation networks where each 
node is a document with associated textual attributes. For large-scale 
knowledge graph tasks, datasets such as FB15k-237 (Toutanova & Chen, 
2015), WN18RR (Dettmers et al., 2018), Wikidata5M (Vrandečić & 
Krötzsch, 2014), NELL (Mitchell et al., 2018), and UMLS (Yao et al., 
2019) are widely adopted for link prediction and knowledge graph com-
pletion. Additionally, domain-specific or task-specific datasets are used 
to evaluate generalizability, including Amazon-Clothing and Amazon-
Sports (McAuley et al., 2015) for recommendation and link predic-
tion, PeMS03/04/07 (Zhang et al., 2021) for spatiotemporal forecasting, 
TQA/WTQ/TabFact (Chen et al., 2019b; Pasupat & Liang, 2015; Zheng 
et al., 2023a) for table understanding, and GrailQA/WebQSP/KQA Pro 
(Cao et al., 2022; Gu et al., 2021; Yih et al., 2016) for knowledge graph 
question answering. Some works also utilize synthetic graphs (Wang 
et al., 2023a; Xu et al., 2024b) to test reasoning capabilities in controlled 
environments.

A variety of evaluation metrics are used depending on the task. For 
classification, Accuracy, Macro-F1, and Micro-F1 are most common. 
Knowledge graph-related tasks report Mean Reciprocal Rank (MRR) and 
Hits@N as standard ranking metrics. Spatiotemporal forecasting relies 
on MAE, RMSE, and MAPE, while generative tasks such as question an-
swering are evaluated using Exact Match, BLEU-4, and ROUGE-L.

The surveyed models address a wide range of downstream tasks, 
including node classification, link prediction, knowledge graph com-
pletion, anomaly detection, graph reasoning, question answering over 
knowledge graphs, and spatiotemporal forecasting. This diversity high-
lights the versatility of LLMs in handling incomplete graph data across 
domains and tasks.

3.1.5.  Summary of incompleteness
Across robust learning, few-shot learning, and KGC, the common 

thread is that LLMs serve as knowledge-infusers and intelligent guessers 
for what is missing in the graph. They help create a more complete 
picture by either filling in data directly or guiding the graph model 
on where to look. Empirically, studies report that incorporating LLM-
generated features or suggestions leads to substantial gains in tasks like 
node classification with missing features, link prediction with sparse 
edges, and KG completion benchmarks. As LLMs continue to improve, 
especially in domain-specific knowledge, we expect their role in han-
dling graph incompleteness to grow.

3.2.  Imbalance in graphs

Graph data often exhibits imbalance that can severely affect the per-
formance, particularly in tasks such as node classification (as shown 
in Fig. 6). This imbalance typically complicates the learning process as 
models tend to be biased toward the majority class or low-degree nodes, 
resulting in poor generalization for underrepresented elements. To ad-
dress this, techniques such as resampling, re-weighting, and graph-based 
regularization have been proposed to alleviate the effects of data imbal-
ance. However, these approaches often require domain-specific adjust-
ments and may not always yield optimal results.

Recent advances in LLMs offer promising solutions to the challenges 
posed by imbalanced graph data. LLMs, with their ability to process and 
generate semantically rich representations, can be leveraged to enrich 
the graph’s feature space, enabling more nuanced and balanced learn-
ing.
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Fig. 6. Illustration of three representative tasks addressing graph imbalance. 
Class-imbalanced graph learning (left) refers to scenarios where certain node 
classes (minority classes) are underrepresented compared to others. Structure-
imbalanced graph learning (right) highlights disparities in node connectivity, 
where high-degree nodes dominate information flow while low-degree nodes 
are underexposed.

This section reviews the application of traditional methods and LLMs 
for learning from imbalanced graph data. The literature is categorized 
into two key research areas: (1) Class Imbalance and (2) Structure Im-
balance. The relevant references and categorization are presented in
Table 2.

3.2.1.  Class-imbalanced graph learning
Class imbalance refers to scenarios where the sample size of cer-

tain categories is significantly smaller than others. For instance, in so-
cial networks, ordinary users vastly outnumber influential “key opinion 
leaders”, while in fraud detection systems, legitimate transactions over-
whelmingly dominate over fraudulent ones. Traditional classifiers, in-
cluding GNNs, often exhibit a bias toward predicting majority-class sam-
ples, resulting in suboptimal recognition accuracy for minority classes 
(Liu et al., 2023d; Ma et al., 2023). Furthermore, GNNs update node rep-
resentations by aggregating neighborhood information. Minority-class 
nodes risk being structurally homogenized or misrepresented when their 
local neighborhoods are dominated by majority-class nodes, leading to 
a propagation of representation bias across the graph.

(1) Traditional Methods Traditional methods for addressing class 
imbalance in graph data primarily include clustering, contrastive learn-
ing, data augmentation, and innovative loss function. Most articles com-
bine one or more of the above techniques to solve the class imbalance 
problem.

ECGN (Thapaliya et al., 2024) proposes a cluster-aware graph neural 
network framework that explicitly models the graph cluster structure to 
balance class representations, utilizing intra-cluster contrastive loss to 
enhance the distinguishability of minority class nodes. Similarly, C3GNN 
(Ju et al., 2024b) clusters majority class nodes into subclasses and con-
trasts them with the minority class, using Mixup techniques to enhance 
the semantic substructure representation and alleviate the class imbal-
ance problem. These methods share a key insight: clustering helps bal-
ance the class distribution by dividing majority class samples into mul-
tiple subclasses, and contrastive learning can improve the separability 
of minority nodes by constructing positive and negative sample pairs. 
Building on this, CCGC (Yang et al., 2023) designs a clustering-based 
positive sample selection strategy and optimizes graph representations 
through hierarchical contrastive learning, reducing overfitting to the mi-
nority class. ImGCL (Zeng et al., 2023) introduces a progressive balanced 
sampling strategy, dynamically adjusting contrastive weights based on 
node centrality measures, and utilizes pseudo-labeling to address topo-

logical imbalance. These works highlight how clustering and contrastive 
learning can be synergistically combined to tackle both structural and 
label imbalance.

Another line of work focuses on data augmentation, which involves 
generating diverse topologies or attribute changes for minority classes 
to balance the data distribution. GraphSMOTE (Zhao et al., 2021), a pi-
oneering method, interpolates minority nodes in the embedding space 
and predicts edges to preserve topological consistency. However, such 
interpolation-based methods may struggle with semantic coherence. To 
address this, GraphSHA (Li et al., 2023d) generates hard samples via 
feature mixing and employs a semi-mixed connection strategy to pre-
vent neighbor-class encroachment, enhancing boundary discrimination. 
Augmentation is often paired with adaptive loss functions. For example, 
TAM (Song et al., 2022) introduces topology-aware margin loss, dynam-
ically adjusting classification boundaries based on local neighbor distri-
butions of nodes, addressing decision bias caused by label node location 
shifts.

Beyond data generation, another research direction emphasizes di-
rectly strengthening tail-class representations and rebalancing classi-
fiers, often through retrieval or expert-based designs. For instance, RAH-
Net (Mao et al., 2023) combines a retrieval module with a second-stage 
classifier that applies max-norm and weight decay regularization. This 
joint design improves representation quality while reducing head-class 
dominance. Building on the idea of specialized modules, CoMe (Yi et al., 
2023) introduces a collaborative-expert framework, where a general ex-
pert captures global shared patterns and a specific expert focuses on tail-
class features; a collaboration regularizer further enforces complemen-
tarity, leading to more balanced performance. Extending this paradigm, 
KDEX (Mao et al., 2025) trains knowledge-diverse experts, each special-
izing in different structural or semantic patterns, and integrates their 
outputs via an expert allocation and fusion mechanism. Collectively, 
these approaches highlight how retrieval and expert-based architectures 
can complement generation strategies by directly enhancing the repre-
sentation and robustness of tail classes.

In addition, HGIF (Ren et al., 2024a) addresses the heteroge-
neous graph scenario by using invariance learning to separate seman-
tically invariant features, enhancing the robustness of fraud detection 
in out-of-distribution settings. GraphSANN (Liu et al., 2023a) breaks 
the homophily assumption and designs a topological reconstruction 
framework to tackle the class imbalance problem in heterogeneous
graphs.

(2) Methods Based on LLMs LLM-based techniques offer a novel ap-
proach to address class imbalance. Researchers can overcome the lim-
itations of traditional methods by leveraging three aspects: semantic-
driven data augmentation, context-aware text understanding, and exter-
nal knowledge injection. Fig. 7 illustrates how LLMs can address class 
imbalance in graph learning by synthesizing semantically rich repre-
sentations for minority class nodes. In this framework, graph neighbor-
hoods, node attributes, and type constraints are linearized into natural 
language prompts, serving as the sole input modality for the LLM. This 
allows the model to generate new nodes or edge candidates with both 
semantic coherence and structural compatibility.

First, some methods utilize the text generation capabilities of LLMs 
for node attribute descriptions (such as entity descriptions and label 
semantic expansion) to synthesize more semantically coherent features 
for minority class nodes. LA-TAG (Wang et al., 2024d) proposes a frame-
work for text attribute rewriting and synthesis based on LLMs. It gen-
erates minority class node descriptions compatible with graph topology 
through instruction tuning, solving the semantic disconnection problem 
in text-graph alignment of traditional methods. Similarly, LLM4NG (Yu 
et al., 2025) designs a node generation approach for few-shot scenarios. 
It utilizes the LLM decoder to generate virtual nodes with both semantic 
coherence and structural consistency, while applying contrastive regu-
larization to constrain the embedding space distribution. The method in 
(Zhang et al., 2024e) also integrates graph structure understanding mod-
ules with LLM generators to achieve fine-grained synthesis of sparse data 
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Table 2 
LLM-based methods for handling imbalance in graphs, grouped by domain and task, with representative methods, datasets, metrics, and downstream tasks.
Domain  Tasks Method Typical Datasets Common Metrics Downstream Tasks
Class Imbalance 
Graph Learning

 Node Classification LLM4NG (Yu et al., 
2025)

Cora (McCallum et al., 2000), PubMed (Prithviraj 
et al., 2008), ogbn-arxiv (Hu et al., 2020)

Accuracy Few-shot Node Classification

LLM-GNN (Chen 
et al., 2023c)

Cora (McCallum et al., 2000), Citeseer (Giles 
et al., 1998), PubMed (Prithviraj et al., 2008), 
ogbn-arxiv (Hu et al., 2020), ogbn-products (Hu 
et al., 2020), Wikics (Mernyei & Cangea, 2020)

Accuracy Label-free Node Classification

G2P2 (Wen & Fang, 
2023)

Cora (McCallum et al., 2000), Art (Ni et al., 2019), 
Industrial (Ni et al., 2019) and Music Instruments 
(Ni et al., 2019)

Accuracy, Macro-F1 Zero- and Few-shot Low-resource 
Text Classification

LA-TAG (Wang 
et al., 2024d)

Cora (McCallum et al., 2000), PubMed (Prithviraj 
et al., 2008), Photo (Yan et al., 2023), Computer 
(Yan et al., 2023), and Children (Yan et al., 2023)

Accuracy, Macro-F1 Zero- and Few-shot Low-resource 
Text Classification

GSS-Net (Zhang 
et al., 2024e)

Magazine Subscriptions (Ni et al., 2019), 
Appliances (Ni et al., 2019), Gift Cards (Ni et al., 
2019)

Accuracy, Precision, 
Recall, F1-score, 
MSE, RMSE, and 
MAE

Sentiment Classification on 
Streaming E-commerce Reviews

TAGrader (Pan 
et al., 2024)

Cora (McCallum et al., 2000), PubMed (Prithviraj 
et al., 2008), ogbn-products (Hu et al., 2020), 
Arxiv-2023 (He et al., 2024a)

Accuracy Node Classification on 
Text-attributed Graphs

SEGA (Chen et al., 
2024b)

DAIC-WOZ (Gratch et al., 2014), EATD (Shen 
et al., 2022)

Macro-F1 Depression Detection

SocioHyperNet (Shu 
et al., 2024)

MBTI (Shu et al., 2024) Accuracy, AUC, 
Macro-F1, Micro-F1, 
IMP

Examining Personality Traits

Cella (Zhang et al., 
2024d)

Cora (McCallum et al., 2000), Citeseer (Giles 
et al., 1998), PubMed (Prithviraj et al., 2008), 
Wiki-cs (Mernyei & Cangea, 2020)

Accuracy, NMI, ARI, 
F1-score

Label-free Node Classification

LLM-TIKG (Hu 
et al., 2024)

threat-dataset (Hu et al., 2024) Precision, Recall, 
F1-Score

Threat Intelligence Knowledge 
Graph Construction

ANLM-
assInNNER (Liao 
et al., 2025)

NE dataset (Liao et al., 2025) Precision, Recall, 
F1-Score

Robotic Fault Diagnosis 
Knowledge Graph Construction

LLM-HetGDT (Ma 
et al., 2025)

Twitter-HetDrug (Ma et al., 2025) Macro-F1, GMean Online Drug Trafficking Detection

 Prediction LLM-SBCL (Ni et al., 
2024)

biology (Ni et al., 2024), law (Ni et al., 2024), 
cardiff20102 (Ni et al., 2024), sydney19351 (Ni 
et al., 2024), and sydney23146 (Ni et al., 2024)

Binary-F1, Micro-F1, 
Macro-F1, Accuracy

Student Performance Prediction

LKPNR (Runfeng 
et al., 2023)

MIND (Wu et al., 2020) AUC, MRR, nDCG Personalized News 
Recommendation

LLM-DDA (Gu et al., 
2024b)

BCFR-dataset (Gu et al., 2024b) AUC, AUPR, 
F1-score, Precision

Computational Drug 
Repositioning

 Graph Completion KICGPT (Wei et al., 
2023)

FB15k-237 (Toutanova & Chen, 2015), WN18RR 
(Dettmers et al., 2018)

MRR, Hits@N Link Completion

KGCD (Hou et al., 
2025)

WN18RR (Dettmers et al., 2018), YAGO3 -10 
(Toutanova & Chen, 2015), WN18 (Bastos et al., 
2021)

MRR, Hits@N Low-resource Knowledge Graph 
Completion

 Foundation Model GraphCLIP (Zhu 
et al., 2024c)

ogbn-arXiv (Hu et al., 2020), Arxiv-2023 (He 
et al., 2024a), PubMed (Prithviraj et al., 2008), 
ogbn-products (Hu et al., 2020), Reddit (Huang 
et al., 2024), Cora (McCallum et al., 2000), 
CiteSeer (Giles et al., 1998), Ele-Photo (Yan et al., 
2023), Ele-Computers (Yan et al., 2023), 
Books-History (Yan et al., 2023), Wikics (Mernyei 
& Cangea, 2020), Instagram (Huang et al., 2024)

Accuracy Transfer Learning on 
Text-attributed Graphs

Structure 
Imbalance 
Graph Learning

 Node Classification GraphEdit (Guo 
et al., 2024)

Cora (McCallum et al., 2000), Citeseer (Giles 
et al., 1998), PubMed (Prithviraj et al., 2008)

Accuracy Refining Graph Topologies

 Graph Completion SATKGC (Ko et al., 
2024)

WN18RR (Dettmers et al., 2018), FB15k-237 
(Toutanova & Chen, 2015), Wikidata5M (Wang 
et al., 2021b)

MRR, Hits@N Knowledge Graph Completion

MPIKGC (Xu et al., 
2024a)

FB15k-237 (Toutanova & Chen, 2015), WN18RR 
(Dettmers et al., 2018), FB13 (Socher et al., 2013), 
WN11 (Socher et al., 2013)

MR, MRR, Hits@N, 
Accuracy

Knowledge Graph Completion

LLM4RGNN (Zhang 
et al., 2024i)

Cora (McCallum et al., 2000), Citeseer (Giles 
et al., 1998), PubMed (Prithviraj et al., 2008), 
ogbn-arxiv (Hu et al., 2020), ogbn-products (Hu 
et al., 2020)

Accuracy Improving the Adversarial 
Robustness
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Fig. 7. Illustration of an LLM-based pipeline for addressing class imbalance in 
graphs. Minority class information is first extracted and linearized into textual 
prompts, which are processed by the LLM to generate semantically enriched 
nodes and edges. The newly synthesized elements (highlighted in red) are in-
tegrated into the original graph to enhance representation and balance class 
distributions.

streams, dynamically balancing class distributions in real-time graph 
data.

Another approach focuses on the contextual understanding and rea-
soning capabilities of LLMs, mining implicit relationships of minority 
classes through structure-aware reasoning. Both LLM-GNN (Chen et al., 
2023c) and Cella (Zhang et al., 2024d) proposed a zero-shot classifi-
cation framework based on LLM semantic reasoning. By parsing node 
attributes and neighbor context, they directly generate category predic-
tion confidence and get rid of the dependence on labeled data. G2P2 
(Wen & Fang, 2023) introduces a graph-guided pretraining prompt 
framework, using LLMs to generate augmented text related to graph 
structure, enhancing the discriminability of low-resource classes in het-
erogeneous spaces. Meanwhile, LLM-TIKG (Hu et al., 2024) builds a 
threat intelligence knowledge graph, using LLMs to extract attack pat-
tern association rules from unstructured text, and enhancing the repre-
sentation of minority class threat entities through heterogeneous graph 
attention.

To improve generalization on sparse or long-tail categories in graphs, 
another line of work focuses on injecting external knowledge-either 
from open-domain corpora or domain-specific sources-into the learn-
ing process. KICGPT (Wei et al., 2023) enriches long-tail relational rea-
soning by dynamically constructing structure-aware prompts with con-
textual knowledge, significantly improving completion performance for 
sparse relations. In the recommendation domain, LKPNR (Runfeng et al., 
2023) integrates user preference reasoning from LLMs and semantic 
path mining to address cold-start scenarios in long-tail news recommen-
dation. KGCD (Hou et al., 2025) augments knowledge graph completion 
with pseudo-triplets generated from logical rules, guiding the model to 
focus on underrepresented relations. Other methods, such as (Pan et al., 
2024), distill open-domain knowledge from LLMs into graph encoders 
through hierarchical knowledge transfer, while GraphCLIP (Zhu et al., 
2024c) leverages cross-modal alignment to construct graph-text con-
trastive learning objectives for tail-category enhancement. In biomedi-
cal applications, LLM-DDA (Gu et al., 2024b) infuses mechanistic knowl-
edge into graph reconstruction, improving drug repurposing predictions 
for rare diseases. These works demonstrate that LLMs serve not just 
as predictors, but as external knowledge carriers that can guide graph 
learning systems beyond their native data distributions.

In addition to the aforementioned new technologies, the introduction 
of LLMs has accelerated innovation in cross-domain applications. SEGA 
(Chen et al., 2024b) uses LLMs to parse the structured elements of clin-
ical conversation graphs, extracting depression semantic clues and so-
cial interaction patterns, enhancing the recognition of minority positive 
samples in mental health classification. The method in Shu et al. (2024) 
proposes an LLM-enhanced sociological analysis framework based on 
hypergraphs, addressing behavior class imbalance in social media data 

through personality trait hyperedge modeling and LLM semantic decon-
struction. ANLM-assInNNER (Liao et al., 2025) develops an automatic 
construction system for robot fault diagnosis knowledge graphs, using 
LLMs to generate fine-grained fault entity descriptions and balancing the 
data distribution of equipment status categories. LLM-SBCL (Ni et al., 
2024) combines graph neural networks with LLM cognitive state mod-
eling, improving the reliability of predicting questions on less common 
knowledge points through semantic enhancement of learner-question 
interaction graphs.

In summary, LLM-based approaches for class imbalance aim to even 
out the information content per class by generating additional data or 
highlighting distinguishing features, rather than just mathematically re-
weighting or duplicating existing data.

3.2.2.  Structure-imbalanced graph learning
Structural imbalance refers to skewness in graph topology that can 

hinder learning. A typical example is a hub node vs. peripheral node 
issue: Hub nodes with very high degree can dominate aggregation and 
also often have many more training signals, whereas low-degree nodes 
might be ignored or get a very noisy aggregate from a single neighbor. 
Similarly, certain substructures might be over-represented. For example, 
in a molecule graph dataset for drug discovery, maybe most molecules 
contain a benzene ring but only a few contain a rarer motif; a GNN might 
mostly learn features relevant to benzene rings and be less sensitive to 
the rare motif, which could be critical for certain properties.

(1) Traditional Methods The main techniques for addressing 
structural imbalance in graph data can be broadly divided into two 
lines: debiasing-based approaches and structural enhancement-based 
approaches. From the debiasing perspective, several methods focus on 
dynamically adjusting neighbor aggregation weights to reduce the over-
dominance of high-centrality nodes. For example, DegFairGNN (Liu 
et al., 2023e) introduces a generalized degree fairness constraint that re-
allocates neighborhood attention weights between high- and low-degree 
nodes, thereby mitigating bias in GNN message passing. Extending this 
idea to knowledge graphs, KG-Mixup (Shomer et al., 2023) analyzes de-
gree bias in entity embeddings and proposes a degree-aware contrastive 
loss to balance geometric constraints between high- and low-degree en-
tities. Together, these approaches highlight the importance of reweight-
ing meachanisms for correcting degree-induced biases. On the other 
hand, structural enhancement approaches aim to enrich the represen-
tation capacity of underrepresented nodes or substructures. SOLT-GNN 
(Liu et al., 2022) improves graph classification by using a size-aware 
hierarchical pooling strategy that balances representation distributions 
through subgraph cropping and feature decoupling. Building on the idea 
of subgraph augmentation, SAILOR (Liao et al., 2023) strengthens the 
visibility of low-degree nodes in the global topology via 𝑘-hop subgraph 
expansion and adversarial edge generation. Both methods demonstrate 
that explicitly enhancing substructures can effectively alleviate long-
tailed imbalance in graphs. A complementary line of work tackles imbal-
ance from the perspective of global structure reconstruction and regular-
ization. HiRe (Wu et al., 2022) develops a hierarchical relational meta-
learning framework with a meta-path-guided negative sampling mech-
anism, balancing the structural coverage density between head and tail 
relations in knowledge graphs. Similarly, QTIAH-GNN (Liu et al., 2023c) 
introduces a heterogeneous GNN that jointly considers quantity imbal-
ance and topological imbalance, using meta-relation-specific neighbor 
sampling together with topological entropy regularization. These meth-
ods illustrate how global structural modeling can address both numeri-
cal and topological imbalance.

Although existing methods have alleviated the problem of graph 
structural imbalance to a certain extent, they still have limitations. They 
often rely on manually designed constraint rules, which leads to limited 
generalization ability and difficulty in adapting to complex and chang-
ing graph structural deviations. At the same time, these methods tend 
to ignore the semantic associations of the global topology, and usually 
adopt static adjustment strategies, which cannot dynamically adapt to 
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Fig. 8. Structural imbalance remediation via LLM-based text-topology co-
optimization. The optimized graph (right) shows the rebalanced connectivity, 
with new connections indicated in red.

the structural evolution patterns implicit in the graph (Liu et al., 2023d; 
Ma et al., 2023).

(2) Methods Based on LLMs LLM-based methods offer a new 
paradigm for addressing structural imbalance in graphs by generat-
ing semantically meaningful edits-such as context-aware virtual edges 
or subgraph structures-that enhance connectivity for long-tail nodes 
(Fig. 8). Unlike traditional GNN-based approaches, which learn struc-
tural patterns primarily from in-graph statistical distributions, LLM-
based frameworks integrate rich prior semantic knowledge obtained 
from large-scale pretraining with graph-specific structures.

For example, SATKGC (Ko et al., 2024) constructs subgraph-aware 
embeddings and uses contrastive losses to reinforce coherence among 
tail relations. MPIKGC (Xu et al., 2024a) integrates LLMs for semantic 
enhancement, structural correction, and logic-driven edge generation, 
effectively mitigating relational imbalance. LLM4RGNN (Zhang et al., 
2024i) transfers GPT-4’s reasoning capacity to detect and recover from 
malicious structural edits in a lightweight graph refinement framework. 
Complementing these, GraphEdit (Guo et al., 2024) proposes an iter-
ative generate-and-validate loop, where LLMs suggest candidate edges 
which are then filtered by topological validators to ensure semantic and 
structural consistency. These approaches demonstrate that, when graphs 
are represented in text-compatible forms, LLMs can inject new connec-
tions that are not arbitrary, but semantically aligned-offering principled 
structure augmentation for underrepresented classes.

3.2.3.  Evaluation for handling imbalance in graphs
We summarize the evaluation protocols for LLM-based methods ad-

dressing graph imbalance, covering key datasets, metrics, and down-
stream tasks (see Table 2). Commonly used datasets include Cora (Mc-
Callum et al., 2000), Citeseer (Giles et al., 1998), PubMed (Prithvi-
raj et al., 2008), and ogbn-arxiv (Hu et al., 2020) for node classifica-
tion under class imbalance, and FB15k-237, WN18RR (Dettmers et al., 
2018; Toutanova & Chen, 2015) for knowledge graph completion in low-
resource settings. Domain-specific benchmarks such as threat-dataset 
(Hu et al., 2024) and Twitter-HetDrug (Ma et al., 2025) are also adopted 
for specialized applications like fraud detection and mental health anal-
ysis.

Standard evaluation metrics vary by task: Accuracy and Macro-F1 
are widely used for classification, while MRR and Hits@N are reported 
for link prediction and knowledge graph completion. For recommen-
dation and retrieval tasks, AUC, MRR, and nDCG are common. Down-
stream tasks include few-shot node classification, sentiment analysis, 
knowledge graph construction, and drug repositioning, demonstrating 
the adaptability of LLMs in balancing both label and structural distribu-
tions. These evaluations highlight the effectiveness of LLM-based meth-
ods in enhancing model performance on underrepresented classes and 
nodes.

3.2.4.  Summary of imbalance
Traditional graph imbalance methods mitigate bias via re-sampling, 

cost adjustment, or graph augmentation, but they lack external seman-
tic context. LLM-integrated methods aim to generate new graph content 
or features that specifically bolster the minority classes or structures. 
As reported in recent studies, using LLMs in this way can significantly 
improve classification performance on long-tail classes and ensure that 
even structurally unique nodes are recognized. Essentially, LLMs func-
tion as an intelligent oversampling mechanism: instead of naive duplica-
tion, they produce novel yet relevant samples in data space. The result 
is often more balanced training data for the graph model and better 
generalization to minority cases.

3.3.  Cross-domain heterogeneity in graphs

Real-world graph data is often collected from multiple source do-
mains (Collarana et al., 2017; Li et al., 2023e; Petermann et al., 2014), 
which can exhibit significant heterogeneity, referring to extreme dis-
parities in both attributes and structural patterns. This heterogeneity 
typically arises when the graph data is collected or integrated from do-
mains with inconsistent data modalities or distributions. Cross-domain 
heterogeneity introduces significant challenges for graph analysis and 
modeling, as the severe disparities make it difficult to unify these data 
into a common representation space (Tsai et al., 2016; Zhang et al., 
2019c) and even hinder the detection of valuable and transferable fea-
tures that can generalize well throughout the graph (Hassani, 2022; Zhu 
et al., 2021). Moreover, addressing cross-domain heterogeneity is a key 
prerequisite for building graph foundation models for more generaliz-
able and scalable graph learning across diverse real-world applications 
(Liu et al., 2024a).

While traditional graph domain adaptation methods (Wu et al., 
2024a) and multimodal graph learning methods (Peng et al., 2024a) 
can help bridge the gap between different distributions or modalities 
from different graph domains, they typically require large-scale train-
ing datasets from different domains and cannot generalize to some un-
seen domains during training. In contrast, LLMs, with their superior 
comprehension and generalization abilities, can extract valuable and 
transferable semantic and structural features within a unified represen-
tation space without training from scratch, effectively addressing the 
challenges posed by cross-domain heterogeneity in graph learning (Liu 
et al., 2024c).

In this section, as illustrated in Fig. 9, we categorize cross-domain 
heterogeneity in graph data into three types: within-modality attribute 
heterogeneity, cross-modality attribute heterogeneity, and structural 
heterogeneity. Since LLMs are specifically designed for modeling tex-
tual modality, our focus on within-modality attribute heterogeneity pri-
marily centers around textual attributes. For each type, we first review 
traditional graph learning methods, analyzing their strengths and limi-
tations, and then discuss recent research leveraging LLMs to unify graph 
data and address the corresponding challenges. The relevant references 
and categorization are summarized in Table 3.

3.3.1.  Text-attributed graph learning
Textual attributes are common in real-world graph data, such as the 

abstract of each paper in a co-citation network (Yang et al., 2021) or 
item descriptions in a recommendation network (Wei et al., 2024a). 
Although these textual attributes appear in the same modality, they 
can demonstrate significant distribution heterogeneity due to different 
sources. For example, textual attributes such as clinical notes could come 
from different healthcare providers, each with their own writing style, 
vocabulary, and context (Mashima et al., 2024). Similarly, clinical notes 
might be informal and easy to understand for patients, while medical 
codes should be more formal and standardized. Moreover, the textual 
attributes can appear in different languages (Moreo et al., 2022), further 
increasing the heterogeneity. The distribution heterogeneity in textual 
attributes can lead to inconsistent semantic representations, making it 
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difficult for graph learning methods to effectively capture transferable 
features.

(1) Traditional Methods for Textual Attribute Modeling To han-
dle the heterogeneity in textual data, early data integration methods ex-
tract structured information from unstructured textual inputs, thereby 

reducing variability across sources and producing unified features for 
downstream tasks (Dong & Rekatsinas, 2018; Ford et al., 2016; Sheikhal-
ishahi et al., 2019). However, these approaches require manual design of 
data schemes and training extraction models tailored to specific applica-
tions. In contrast, statistical methods, such as Bag of Words and TF-IDF 

Table 3 
LLM-based methods for handling cross-domain heterogeneity in graphs, grouped by domains and tasks, with representative methods, datasets, metrics, 
and downstream tasks.
Domains Tasks Methods Typical Datasets Common Metrics Downstream Tasks
Text-Attributed 
Graph Learning

Textual Attribute 
Alignment

TAPE (He et al., 
2024a)

Cora (McCallum et al., 2000), PubMed (Prithviraj et al., 
2008), Arxiv-2023 (He et al., 2024a), ogbn-arxiv (Hu et al., 
2020), ogbn-products (Hu et al., 2020)

Accuracy Node Classification

LLMRec (Wei 
et al., 2024a)

MovieLens (Harper & Konstan, 2015), Netflix (Netflix, Inc., 
2025)

Recall, NDCG, Precision Item 
Recommendation

MINGLE (Cui 
et al., 2024)

MIMIC-III (Johnson et al., 2016), CRADLE (Cui et al., 
2024)

Accuracy, AUC, AUPR, 
F1

Node Classification

GHGRL (Gao 
et al., 2024a)

IMDB (Zhang et al., 2019a), DBLP (Zhang et al., 2019a), 
ACM (Zhang et al., 2019a), Wiki-CS (Mernyei & Cangea, 
2020), IMDB-RIR (Gao et al., 2024a), DBLP-RID (Gao 
et al., 2024a)

Macro-F1, Micro-F1 Node Classification

Graph Foundation 
Model

OFA (Liu et al., 
2024a)

Cora (McCallum et al., 2000), PubMed (Prithviraj et al., 
2008), ogbn-arxiv (Hu et al., 2020), Wiki-CS (Mernyei & 
Cangea, 2020), MOLHIV (Wu et al., 2018), MOLPCBA (Wu 
et al., 2018), FB15K237 (Toutanova & Chen, 2015), 
WN18RR (Dettmers et al., 2018), ChEMBL (Gaulton et al., 
2012)

Accuracy, AUC, AUPR Node Classification, 
Link Prediction, 
Graph Classification

UniGraph (He & 
Hooi, 2024)

Cora (McCallum et al., 2000), PubMed (Prithviraj et al., 
2008), ogbn-arxiv (Hu et al., 2020), ogbn-products (Hu 
et al., 2020), Wiki-CS (Mernyei & Cangea, 2020), 
FB15K237 (Toutanova & Chen, 2015), WN18RR (Dettmers 
et al., 2018), MOLHIV (Wu et al., 2018), MOLPCBA (Wu 
et al., 2018)

AUC Node Classification, 
Link Prediction, 
Graph Classification

BooG (Cheng 
et al., 2024)

Cora (McCallum et al., 2000), PubMed (Prithviraj et al., 
2008), ogbn-arxiv (Hu et al., 2020), Wiki-CS (Mernyei & 
Cangea, 2020), MOLHIV (Wu et al., 2018), MOLPCBA (Wu 
et al., 2018)

AUC Node Classification, 
Graph Classification

Hyper-FM (Feng 
et al., 2025a)

Cora-CA-Text (Feng et al., 2025a), Cora-CC-Text (Feng 
et al., 2025a), Pubmed-CA-Text (Feng et al., 2025a), 
Pubmed-CC-Text (Feng et al., 2025a), AminerText (Feng 
et al., 2025a), Arxiv-Text (Feng et al., 2025a), 
Movielens-Text (Feng et al., 2025a), IMDB-Text (Feng 
et al., 2025a), GoodBook-Text (Feng et al., 2025a), 
PPI-Text (Feng et al., 2025a)

Accuracy Node Classification

Multimodal 
Attributed 
Graph Learning

MLLM-based 
Multimodal 
Alignment

LLMRec (Wei 
et al., 2024a)

MovieLens (Harper & Konstan, 2015), Netflix (Netflix, Inc., 
2025)

Recall, NDCG, Precision Item 
Recommendation

MAGB (Yan 
et al., 2024)

Cora (McCallum et al., 2000), Wiki-CS (Mernyei & Cangea, 
2020), Ele-Photo (Yan et al., 2023), Flickr (Zeng et al., 
2020), Movies (Yan et al., 2024), Toys (Yan et al., 2024), 
Grocery (Yan et al., 2024), Reddit-S (Yan et al., 2024), 
Reddit-M (Yan et al., 2024)

Accuracy, F1 Node Classification

Graph-Enhanced 
Multimodal 
Alignment

MMGL (Yoon 
et al., 2023)

WikiWeb2M (Burns et al., 2023) BLEU-4, ROUGE-L, CIDEr Section 
Summarization

GraphAdapter (Li 
et al., 2024g)

ImageNet (Deng et al., 2009), StandfordCars (Krause et al., 
2013), UCF101 (Soomro et al., 2012), Caltech101 (Fei-Fei 
et al., 2004), Flowers102 (Nilsback & Zisserman, 2008), 
SUN397 (Xiao et al., 2010), DTD (Cimpoi et al., 2014), 
EuroSAT (Helber et al., 2019), FGVCAircraft (Maji et al., 
2013), OxfordPets (Parkhi et al., 2012), Food101 (Bossard 
et al., 2014)

Accuracy Image Classification

TouchUp-
G (Zhu et al., 
2024a)

ogbn-arxiv (Hu et al., 2020), ogbn-products (Hu et al., 
2020), Books (Zhu et al., 2024a), Amazon-CP (Zhu et al., 
2024a)

MRR, Hits@N, Accuracy link prediction, node 
classification

UniGraph2 (He 
et al., 2025)

Cora (McCallum et al., 2000), PubMed (Prithviraj et al., 
2008), ogbn-arxiv (Hu et al., 2020), ogbn-papers100M (Hu 
et al., 2020), ogbn-products (Hu et al., 2020), 
Wiki-CS (Mernyei & Cangea, 2020), FB15K237 (Toutanova 
& Chen, 2015), WN18RR (Dettmers et al., 2018), 
Amazon-Sports (Zhu et al., 2024b), Amazon-Cloth (Zhu 
et al., 2024b), Goodreads-LP (Zhu et al., 2024b), 
Goodreads-NC (Zhu et al., 2024b), Ele-Fashion (Zhu et al., 
2024b), WikiWeb2M (Burns et al., 2023)

Accuracy, BLEU-4, 
ROUGE-L, CIDEr

Node Classification, 
Edge Classification, 
Section 
Summarization
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Table 3 
Continued

Domains Tasks Methods Typical Datasets Common Metrics Downstream Tasks
Structural 
Heterogeneous 
Graph Learning

Topological Graph 
Textualization

LLMto-
Graph (Liu & 
Wu, 2023)

synthetic graph data (Liu & Wu, 2023) Accuracy, Positive 
Response Ratio

Node Classification, 
Path Finding, 
Pattern Matching

NLGraph (Wang 
et al., 2023a)

NLGraph (Wang et al., 2023a) Accuracy, Partial Credit 
Score, Relative Error

Path Finding, 
Pattern Matching, 
Topological Sort

Talk-like-a-
Graph (Fatemi 
et al., 2024)

GraphQA (Fatemi et al., 2024) Accuracy Link Prediction, 
Pattern Matching

GPT4Graph (Guo 
et al., 2023)

ogbn-arxiv (Hu et al., 2020), MOLHIV (Wu et al., 2018), 
MOLPCBA (Wu et al., 2018), MetaQA (Zhang et al., 2018)

Accuracy Node Classification, 
Graph Classification, 
Graph Query 
Language 
Generation

GITA (Wei et al., 
2024b)

GVLQA (Wei et al., 2024b) Accuracy Link Prediction, 
Pattern Matching, 
Path Finding, 
Topological Sort

LLM4-
Hypergraph (Feng 
et al., 2025b)

LLM4Hypergraph (Feng et al., 2025b) Accuracy Isomorphism 
Recognition, 
Structure 
Classification, Link 
Prediction, Path 
Finding

Structural 
Heterogeneous 
Graph Learning

Attributed Graph 
Textualization

Graph-
Text (Zhao 
et al., 2023)

Cora (McCallum et al., 2000), Citeseer (Giles et al., 1998), 
Texas (Pei et al., 2020), Wisconsin (Pei et al., 2020), 
Cornell (Pei et al., 2020)

Accuracy Node Classification

WalkLM (Tan 
et al., 2024b)

PubMed (Prithviraj et al., 2008), MIMIC-III (Johnson et al., 
2016)

Macro-F1, Micro-F1, 
AUC, MRR

Node Classification, 
Link Prediction

Path-
LLM (Shang 
et al., 2024)

Cora (McCallum et al., 2000), Citeseer (Giles et al., 1998), 
PubMed (Prithviraj et al., 2008), ogbn-arxiv (Hu et al., 
2020)

Macro-F1, Micro-F1, 
AUC, Accuracy

Node Classification, 
Link Prediction

Instruct-
GLM (Ye et al., 
2024)

Cora (McCallum et al., 2000), PubMed (Prithviraj et al., 
2008), ogbn-arxiv (Hu et al., 2020)

Accuracy Node Classification, 
Link Prediction

MuseG-
raph (Tan et al., 
2024a)

Cora (McCallum et al., 2000), ogbn-arxiv (Hu et al., 2020), 
MIMIC-III (Johnson et al., 2016), 
AGENDA (Koncel-Kedziorski et al., 2019), 
WebNLG (Gardent et al., 2017)

Macro-F1, Micro-F1, 
Weighted-F1, BLEU-4, 
METEOR, ROUGE-L, 
CHRF++

Node Classification, 
Graph-to-Text 
Generation

Graph-
LLM (Chen 
et al., 2024c)

Cora (McCallum et al., 2000), Citeseer (Giles et al., 1998), 
PubMed (Prithviraj et al., 2008), ogbn-arxiv (Hu et al., 
2020), ogbn-products (Hu et al., 2020)

Accuracy Node Classification

Graph Token 
Learning

GNP (Tian et al., 
2024)

OBQA (Mihaylov et al., 2018), ARC (Clark et al., 2018), 
PIQA (Bisk et al., 2020), Riddle (Lin et al., 2021), PQA (Jin 
et al., 2019), BioASQ (Tsatsaronis et al., 2015)

Accuracy Question Answering

GraphTo-
ken (Perozzi 
et al., 2024)

GraphQA (Fatemi et al., 2024) Accuracy Link Prediction, 
Pattern Matching

GraphGPT (Tang 
et al., 2024a)

Cora (McCallum et al., 2000), PubMed (Prithviraj et al., 
2008), ogbn-arxiv Hu et al. (2020)

Accuracy, Macro-F1, 
AUC

Node Classification, 
Link Prediction

LLaGA (Chen 
et al., 2024a)

Cora (McCallum et al., 2000), PubMed (Prithviraj et al., 
2008), ogbn-arxiv Hu et al. (2020), ogbn-products (Hu 
et al., 2020)

Accuracy Node Classification, 
Link Prediction

TEA-
GLM (Wang 
et al., 2024a)

Cora (McCallum et al., 2000), PubMed (Prithviraj et al., 
2008), ogbn-arxiv Hu et al. (2020), TAG benchmark (Yan 
et al., 2023)

Accuracy, AUC Node Classification, 
Link Prediction

HiGPT (Tang 
et al., 2024b)

IMDB (Zhang et al., 2019a), DBLP (Zhang et al., 2019a), 
ACM Zhang et al. (2019a)

Macro-F1, Micro-F1, 
AUC

Node Classification

(Sparck Jones, 1972), have been introduced to automatically generate 
unified feature vectors from text without relying on domain-specific de-
sign. These feature vectors are often used as inputs for graph learning 
methods, such as GNNs (Hamilton et al., 2017; Kipf & Welling, 2017; 
Veličković et al., 2018), which further incorporate structural informa-
tion from the graph to obtain more effective node representations for 
addressing downstream tasks. For instance, TADW (Yang et al., 2015) 
approximates DeepWalk (Perozzi et al., 2014) using matrix factoriza-
tion, where the TF-IDF feature vectors of node textual attributes serve 
as the initial feature matrix. Paper2vec (Ganguly & Pudi, 2017) utilizes 
learnable Word2vec (Mikolov et al., 2013) text embeddings as initial 

node features, which are then trained by predicting whether two nodes 
belong to the same neighborhood in the graph. While these early statis-
tical methods or shallow models offer solutions for mapping heteroge-
neous textual attributes into a unified space, their limited expressiveness 
cannot effectively capture complex features in these textual attributes. 
Moreover, these methods adopt text embeddings as fixed initial node 
features rather than integrating them with structural learning, limiting 
the potential of leveraging graph topology to enhance the textual at-
tributes representation learning (Yang et al., 2021).

Several advanced methods explore approaches for modeling tex-
tual attributes that can better integrate with graph structures, aim-
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Fig. 9. Illustration of three representative tasks addressing cross-domain het-
erogeneity in graphs. Text-attributed graph learning (left) involves graphs where 
nodes or edges are associated with textual content, requiring joint modeling 
of structure and language. Multimodal attributed graph learning (middle) in-
tegrates diverse data types across nodes or relations. Structural heterogeneous 
graph learning (right) with complex cross-modal dependencies and heteroge-
neous attribute spaces.

ing to improve the representation learning of both textual attributes 
and graph structure data simultaneously. Some approaches, like GI-
ANT (Chien et al., 2022) and its extension E2EG (Dinh et al., 2023), 
leverage self-supervised learning to force text embeddings to encode 
graph-dependent information, which is trained by predicting a node’s 
neighbors from its text. Other methods focus on creating joint archi-
tectures. For example, GraphFormers (Yang et al., 2021) proposes a 
GNN-nested architecture where the transformer-based textual embed-
ding modules and the GNN modules are nested and trained together. 
Heterformer (Jin et al., 2023b) introduces virtual neighbor tokens that 
capture information from both text-rich and textless neighbors, allow-
ing the model to simultaneously consider textual semantic information 
and structural information to embed the textual node attributes. To cap-
ture relation-specific signals in heterogeneous graphs, METAG (Jin et al., 
2023a) employs a single pretrained language model to learn multiplex 
text representations, which can effectively handle the diverse semantic 
relations while maintaining high parameter efficiency.

Although these advanced methods can embed heterogeneous textual 
node attributes into a unified representation space, their dependence 
on complex deep architectures requires a sufficient amount of training 
data. In applications with limited data availability, the model may fail 
to capture the valuable features from excessive heterogeneous textual 
attributes, and the learned features might fail to generalize effectively 
to textual attributes from other sources.

(2) LLM-based Methods for Textual Attribute Modeling LLMs, 
as language models, are naturally suited for modeling attributes rep-
resented in textual modality. With advanced language comprehension 
and generalization capabilities, LLMs can effectively capture the seman-
tic meanings from heterogeneous textual attributes across diverse source 
domains and project them into a unified representation space that pre-
serves the semantic information.

A number of methods leverage the use of LLMs to generate unified 
textual descriptions, which can be fed into a trainable smaller language 
model to extract task-specific embeddings, as depicted in Fig. 10. TAPE 
(He et al., 2024a) leverages the powerful language comprehension ca-
pabilities of LLMs to predict the category of a node based on its textual 
attributes and generate explanations for the prediction, which can be re-
garded as enhanced and aligned textual outputs. These aligned textual 
outputs are fed into a smaller language model to generate node feature 
vectors. As shown in Liu et al. (2024c), the domain shift is reduced in 

Fig. 10. Handling cross-domain textual attribute heterogeneity with LLMs. At-
tributes from different domains are first transformed into unified textual de-
scriptions by an LLM, then converted into unified embeddings using a trainable 
small LM to generate initial features for graph learning methods.

the LLM-enhanced text compared to the original textual attributes. Sim-
ilarly, LLMRec (Wei et al., 2024a) leverages LLMs to summarize user 
profiles and item attributes within a recommendation network, reduc-
ing the heterogeneity of the original attributes and producing aligned 
textual representations. These representations are then reprocessed by 
LLMs to generate unified embedding vectors for both users and items. 
Instead of generating unified textual descriptions, MINGLE (Cui et al., 
2024) utilizes LLMs to map clinical notes and medical codes into a uni-
fied embedding space and uses these unified embedding vectors as initial 
node features for training a hypergraph neural network. GHGRL (Gao 
et al., 2024a) utilizes LLMs to unify textual attributes on heterogeneous 
graphs based on format types and content types. Specifically, it first 
summarizes types information of all nodes using LLMs, which are then 
used to generate attribute summaries for each node based on the pre-
dicted types. These generated attribute summaries are then fed into a 
language model to generate unified feature vectors for training a graph 
neural network.

By transforming categorical and numerical features into textual at-
tributes with language-based descriptions, LLMs can extend their abil-
ity to handle the heterogeneity in these structured attributes, which do 
not naturally belong to the textual modality. For example, in molecular 
graph modeling, node attributes such as atom types or properties are 
typically represented as categorical or numerical values. By converting 
these attributes into descriptive text and enriching with domain-specific 
explanations, LLMs can effectively understand their semantic meaning 
and unify them within a common representation space. Both OFA (Liu 
et al., 2024a) and UniGraph (He & Hooi, 2024) address attribute hetero-
geneity by constructing text-attributed graphs. These models enhance 
textual attributes by incorporating additional semantically rich contex-
tual descriptions. Furthermore, they leverage domain knowledge to en-
rich non-textual attributes with textual representations, enabling LLMs 
to process diverse attributes in a unified manner and generate consis-
tent embedding vectors. BooG (Cheng et al., 2024) follows a similar 
approach but further employs a contrastive learning-based pretraining 
objective, which enhances the ability to learn expressive representa-
tions and generalize across different domains and downstream tasks. 
Similarly, Hyper-FM (Feng et al., 2025a) leverages a language model to 
extract semantic features from cross-domain textual attributes on hyper-
graphs and integrates structural information through hierarchical high-
order neighbor prediction.

These LLM-based methods utilize LLMs to comprehend semantic in-
formation from heterogeneous textual attributes and generate unified 
textual descriptions or vector embeddings for downstream graph learn-
ing methods. The unified and high-quality outputs from LLMs greatly 
simplify the downstream learning process and enhance performance by 
addressing the challenges posed by cross-domain heterogeneity in tex-
tual attributes.

3.3.2.  Multimodal attributed graph learning
Compared to attributes within the same modality, multimodal at-

tributes encompass information from various modalities, such as text, 
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images, audio, and videos. These multimodal attributes offer a more 
comprehensive and enriched representation of the underlying data. By 
capturing different aspects of a node through diverse inputs from differ-
ent sources, multimodal attributes enhance the contextual understand-
ing and provide complementary information that single-modal data may 
lack (Hu et al., 2021; Wang et al., 2020; Wei et al., 2019). However, this 
diversity also introduces additional challenges, as attribute heterogene-
ity across different domains manifests not only in data distribution but 
also in data formats. This variability complicates the unified process-
ing of these attributes, requiring effective fusion methods to integrate 
information across different modalities (Wilcke et al., 2020; Yan et al., 
2024).

(1) Traditional Methods for Multimodal Attribute Modeling Tra-
ditional methods aim to learn alignment or fusion patterns across dif-
ferent modalities by training models to capture the underlying rela-
tionships between heterogeneous multimodal attributes. MMGCN (Wei 
et al., 2019) learns a multimodal graph convolution network on a user-
item bipartite graph to learn modal-specific representations of users and 
micro-videos to better capture user preferences in different modalities. 
scMoGNN (Wen et al., 2022) utilizes different GNNs to learn represen-
tations of each cell-feature bipartite graph in different modalities, and 
finally concatenates these representations to fuse information from dif-
ferent modalities. Cai et al. (2022) and He and Wang (2023) introduce 
an attention mechanism in graph neural networks to dynamically cap-
ture the importance of information from different modalities. To reduce 
the need for large amounts of labeled data and improve robustness, con-
trastive learning methods are proposed for modeling multimodal graph 
data. Joyful (Li et al., 2023a) designs a global contextual fusion module 
and a specific modalities fusion module to capture information at differ-
ent scales, and then concatenates the representations from both modules 
to generate a unified representation vector for each node. These modules 
are trained by comparing positive and negative pairs in the corrupted 
graphs through edge perturbation and random masking. FormNetV2 
(Lee et al., 2023a) proposes a centralized multimodal graph contrastive 
learning strategy to learn fused representations from different modali-
ties in one loss. HGraph-CL (Lin et al., 2022) introduces a hierarchical 
graph contrastive learning framework that builds intra-modal and inter-
modal graphs, leveraging graph augmentations and contrastive learn-
ing to capture complex sentiment relations within and across different 
modalities.

While these traditional methods can align or fuse multimodal at-
tributes in graph data, they still rely on abundant data to train the model 
and cannot easily generalize to an unseen domain. Compared to LLMs, 
these traditional methods are less adaptable to diverse data distribu-
tions and struggle to leverage pretrained knowledge for more efficient 
generalization.

(2) LLM-based Methods for Multimodal Attribute Modeling Al-
though LLMs are specifically designed for understanding natural lan-
guages and not naturally suited for handling multimodal attributes, they 
can be combined or aligned with models for other modalities. Leverag-
ing their superior generalization ability, LLM-based methods eliminate 
the need for large amounts of application-specific training data, open-
ing up new possibilities for addressing attribute heterogeneity across 
multimodal source domains.

Recent research on MLLMs focuses on developing advanced methods 
to align LLMs with models from other modalities (Li et al., 2023b; Liu 
et al., 2024b; Lyu et al., 2024; Sun et al., 2024; Wang et al., 2024f). 
Although these methods are not specifically designed for graph data, 
they can be used as powerful preprocessing tools for aligning multi-
modal attributes and generating unified representations. For example, 
by unifying textual and visual side information through a pretrained 
model Clip-ViT (Radford et al., 2021), LLMRec (Wei et al., 2024a) ef-
fectively mitigates the multimodal heterogeneity and enhances the node 
features in the recommendation network, leading to significant perfor-
mance improvements. MAGB (Yan et al., 2024) conducts experiments on 
a set of large multimodal attributed graph datasets, which demonstrate 

that MLLMs can effectively alleviate the biases from cross-domain mul-
timodal heterogeneity. Recent approaches align encoders for different 
modalities by leveraging graph structures, making them more naturally 
suited for graph learning tasks. MMGL (Yoon et al., 2023) utilizes LLMs 
and image encoders with adapter layers to embed text and image at-
tributes, respectively. These embeddings are then combined with graph 
positional encodings to capture graph structure information and finally 
fed into LLMs to generate the corresponding outputs. GraphAdapter 
(Li et al., 2024g) introduces GNN-based adaptors for encoders of dif-
ferent modalities, which can better align these encoders based on the 
graph structure information. TouchUp-G (Zhu et al., 2024a) improves 
node features obtained from pretrained models of different modalities 
by adapting them to the graph structure, using a new metric called fea-
ture homophily to quantify the correlation between the graph and node 
features, which enhances GNN performance across different tasks and 
data modalities. Following this direction, UniGraph2 (He et al., 2025) 
leverages modality-specific encoders alongside a GNN and an MoE mod-
ule to effectively unify multimodal features while preserving the under-
lying graph structure.

By aligning LLMs with models for different modalities, these methods 
can simultaneously understand the heterogeneity across modalities and 
map the multimodal attributes into a unified embedding space. These 
unified attribute representations simplify the downstream graph learn-
ing process and improve the performance of multi-modal graph learning 
tasks.

3.3.3.  Structural heterogeneous graph learning
Graph structures capture essential connectivity patterns that are cru-

cial for real-world applications. However, graphs constructed from het-
erogeneous source domains can exhibit excessive heterogeneity in struc-
tural patterns. The structural heterogeneity stems from the inherent 
biases of distinct structural patterns across different source domains, 
which cannot generalize throughout the graph and may obscure truly 
valuable structural information. For instance, road network data col-
lected from various cities always exhibit structural heterogeneity, where 
data from some cities may exhibit grid-like structural patterns and data 
from others have radial configurations (Badhrudeen et al., 2022). Such 
heterogeneity hinders the models from capturing underlying generaliz-
able structural features and therefore limits their performance on real-
world applications like traffic flow prediction (Zhang et al., 2024a, 
2025a) or route planning (Zhuang et al., 2019). Traditional graph do-
main adaptation methods rely on training data from different domains 
and cannot generalize to unseen domains. In contrast, LLMs, with their 
superior semantic understanding and generalization abilities, can under-
stand different graph structural patterns in a zero-shot manner (Wang 
et al., 2024a), providing new opportunities for mitigating structural het-
erogeneity in different graph data from unseen domains.

(1) Traditional Methods for Heterogeneous Structure Modeling
While many graph learning methods struggle to generalize across struc-
tures from different source domains with different data distributions, 
recent research investigates how to mitigate this issue by adapting a 
learned model from a source domain to a target domain. These graph 
adaptation methods provide solutions for eliminating the biases across 
different domains and help capture unified and generalizable embed-
dings for graph structures with excessive heterogeneity.

Earlier methods for graph domain adaptation, including DANE 
(Zhang et al., 2019c) and ACDNE (Shen et al., 2020), employ shared-
weight GNNs to align the embedding spaces of different graphs and uti-
lize a least squares generative adversarial network to regularize the dis-
tribution alignment, ensuring that the learned unified embeddings do 
not include domain-specific information. Different from these adversar-
ial regularization methods, some approaches focus on directly aligning 
distributions from different domains using different metrics. For exam-
ple, SR-GNN (Zhu et al., 2021) addresses the domain shifts by regular-
izing the hidden layer distributions using central moment discrepancy. 
GDA-SpecReg (You et al., 2023) combines optimal transport theory and 
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Fig. 11. Two different approachs for handling cross-domain structural hetero-
geneity with LLMs. (a) LLM-based methods convert graph structures into textual 
descriptions, enabling direct input to LLMs. (b) Hybrid methods align GNN-
generated graph token embeddings with the native text token embeddings of 
LLMs in a unified representation space, thereby enhancing the structural com-
prehension capabilities of LLMs.

graph filter theory to derive a theoretical bound for graph domain adap-
tation. Based on this bound, the method utilizes Wasserstein-1 distance 
to regularize the node representation distributions. StruRW (Liu et al., 
2023b) proposes an effective approach to reduce conditional structural 
shifts by re-weighting the edges in the source graph. While most meth-
ods align distributions for spatial representations, DASGA (Pilancı & Vu-
ral, 2020) introduces a spectral-based approach by aligning the Fourier 
bases of the source and target graphs, which ensures that the label func-
tions in both domains have similar coefficients in their respective bases.

While these traditional methods demonstrate superiority in mitigat-
ing cross-domain structural heterogeneity, they require separate source 
and target domain data for training, which limits their application in 
scenarios without such training data or with a large number of domains. 
Additionally, traditional GNNs typically rely on fixed k-hop neighbor-
hoods, limiting their ability to generalize across highly diverse con-
nectivity patterns from different source domains with varying hop dis-
tances. Furthermore, these methods are inherently dependent on train-
ing data, which constrains their ability to handle structures that deviate 
from the patterns observed during training (Zheng et al., 2023b).

(2) LLM-based Methods for Heterogeneous Structure Modeling
Different from traditional graph learning methods, LLM-based meth-
ods provide a more flexible alternative by representing graph structures 
through unified text-based descriptions, which are not restricted by a 
fixed k-hop structural neighborhood assumption. Instead of relying on 
predefined graph processing mechanisms, LLMs, with superior compre-
hension and generalization abilities, can understand unseen structural 
patterns in different domains. Since LLMs are designed to process nat-
ural language inputs, a direct way to bridge the gap between graph 
structures and the input format of LLMs is to transform structural in-
formation into textual descriptions, as depicted in Fig. 11(a). Here we 
survey recent advances in structure-to-text transformation methods that 
enable LLMs to understand heterogeneous structural patterns. Although 
some methods are not specifically designed for mitigating cross-domain 
structural heterogeneity, they provide strong potential for addressing 
the associated challenges.

Recent works have explored how to effectively transform graph 
structures into text to enable better understanding and reasoning by 
LLMs. Early methods (Fatemi et al., 2024; Guo et al., 2023; Liu & Wu, 
2023; Wang et al., 2023a) experimented with existing graph textual-
ization techniques, such as structure description (like node sequences 
and edge sequences) and formal languages (like graph markup language 
(Brandes et al., 2010)). While LLMs can comprehend graph structures 
from these natural language descriptions, their results demonstrate that 
the choice of different textualization techniques can significantly affect 
the performance of LLMs on different graph tasks. Different from previ-
ous methods that only consider natural language format for representing 
graph structures, GITA (Wei et al., 2024b) transforms graph structures 
into both text and images to obtain a better understanding of structural 
information from different modalities, which are then fed into a Vision-
Language Model (VLM) for addressing graph tasks. LLM4Hypergraph 
(Feng et al., 2025b) designs low-order and high-order structure lan-
guages to transform hypergraph structures into natural languages. These 
studies have significantly advanced the exploration of structure-to-text 
approaches for LLMs to comprehend graph topological structures.

Beyond merely understanding topological structures, textual descrip-
tions can also incorporate the attributes of nodes and edges, providing 
a richer context that enables LLMs to capture the intricate features of 
the graph structure. GraphText (Zhao et al., 2023) constructs a graph-
syntax tree to preserve the hierarchical structure and traverses the tree 
structure to generate a graph text sequence, where the node attributes 
are incorporated in the description of leaf nodes. WalkLM (Tan et al., 
2024b) generates paths by attributed random walks and textualizes the 
paths into natural languages for processing in LLMs. To effectively cap-
ture cross-group connections while minimizing noisy nodes, Path-LLM 
(Shang et al., 2024) employs shortest paths to generate structural se-
quences. InstructGLM (Ye et al., 2024) describes graph structures using 
neighbors in different scales and utilizes instruction tuning to finetune 
an LLM to better perform graph tasks. The textual node attributes are 
concatenated with the node index to better incorporate semantic in-
formation. MuseGraph (Tan et al., 2024a) incorporates neighbors and 
paths together to textualize graph structures, which can capture both lo-
cal connectivity and complex path-based relationships between nodes. 
Graph-LLM (Chen et al., 2024c) transforms text-attributed graphs into 
natural languages and demonstrates that LLMs can understand the graph 
structures from language descriptions and demonstrate remarkable zero-
shot performance on graph tasks.

By converting diverse graph structures into natural language descrip-
tions, these structure-to-text transformation methods enable LLMs to 
interpret and reason across varying connectivity patterns in a unified 
manner. These approaches allow LLMs to leverage their pretrained lin-
guistic knowledge to identify valuable relational patterns and facilitate 
more flexible reasoning across different graph topologies with excessive 
heterogeneity.

(3) Hybrid Methods for Heterogeneous Structure Modeling
While structure-to-text transformation methods offer a straightforward 
way to bridge the gap between graph structures and the input format 
of LLMs, they heavily depend on the language comprehension ability 
of LLMs to correctly interpret the input graph structures. Some recent 
works explore learning explicit structure representations using tradi-
tional graph learning methods like GNNs and aligning these represen-
tations with the token space of LLMs, as depicted in Fig. 11(b). These 
hybrid methods leverage the structural modeling capabilities of tradi-
tional graph learning methods alongside the comprehension and rea-
soning strengths of LLMs for more effective graph structure modeling.

Advanced methods bridge the gap between graph structures and 
LLMs by converting graph data into graph tokens that LLMs can un-
derstand. GNP (Tian et al., 2024) and GraphToken (Perozzi et al., 2024) 
both use a GNN to encode graph structure and then employ a projec-
tor to map these embeddings into the token space of the LLM, allow-
ing them to be processed alongside regular text. LLaGA (Chen et al., 
2024a) takes a different approach by reorganizing graph nodes into
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structure-aware sequences before projecting them, which helps the 
model maintain its general-purpose nature. TEA-GLM (Wang et al., 
2024a) refines this alignment with feature-wise contrastive learning, us-
ing principal components from the token space to precisely map GNN 
representations. GraphGPT (Tang et al., 2024a) introduces a dual-stage 
instruction tuning framework that directly aligns graph tokens with 
LLMs using both self-supervised and task-specific instruction tuning. To 
generate graph tokens for heterogeneous graphs, HiGPT (Tang et al., 
2024b) introduces an in-context heterogeneous graph tokenizer that en-
codes diverse node and edge types by using a language-based parame-
terized heterogeneity projector, dynamically generating graph tokens 
that represent the heterogeneous semantic relationships.

These hybrid methods incorporate structure representations from 
traditional graph learning methods to facilitate the structure compre-
hension ability of LLMs, providing more effective solutions for mitigat-
ing the challenges from structural heterogeneity. Additionally, the use 
of compact graph tokens reduces input size and enables LLMs to pro-
cess larger structures within their context window, which is crucial for 
understanding heterogeneous structural patterns across varying scales.

3.3.4.  Evaluation for handling cross-domain heterogeneity in graphs
We summarize the existing evaluation settings for LLM-based meth-

ods for handling cross-domain heterogeneity in graphs, covering bench-
mark datasets, evaluation metrics, and downstream tasks (see Table 3).

Evaluations typically use well-established traditional graph bench-
mark datasets. These datasets span a wide range of domains, including 
citation networks (e.g., Cora (McCallum et al., 2000), Citeseer (Giles 
et al., 1998), and PubMed (Prithviraj et al., 2008)), biomedical graphs 
(e.g., MIMIC-III (Johnson et al., 2016), MOLHIV (Wu et al., 2018), 
and MOLPCBA (Wu et al., 2018)), commercial and recommendation 
networks (e.g., MovieLens (Harper & Konstan, 2015), Netflix (Net-
flix, Inc., 2025), and various Amazon product datasets (Zhu et al., 
2024a)), as well as knowledge graphs (e.g., FB15K237 (Toutanova & 
Chen, 2015) and WN18RR (Dettmers et al., 2018)). While most of these 
datasets are standard in graph learning, cross-domain evaluations dif-
fer from conventional setups. Instead of training and testing within 
the same domain, LLM-based methods are often trained on source-
domain datasets (or without further training) and tested on unseen 
target-domain datasets (Cheng et al., 2024; Wei et al., 2024b; Zhao et al., 
2023). In some cases, few-shot settings are also utilized to assess gener-
alization ability when only a limited number of labeled examples in the 
target domain are available (He & Hooi, 2024; Liu et al., 2024a).

The choice of evaluation metrics typically depends on the task 
type. Classification tasks adopt Accuracy, Macro-F1, Micro-F1, or AUC, 
ranking-oriented tasks like recommendation or link prediction use MRR, 
NDCG, or Hits@N, and generation tasks such as graph-to-text genera-
tion rely on BLEU-4, ROUGE-L, CIDEr, METEOR, or CHRF++. Met-
rics are usually evaluated under zero-shot or few-shot settings to reflect 
cross-domain generalization. However, traditional metrics may miss 
cases where outputs are semantically correct but inconsistent in domain-
specific format or style. LLMs, in contrast, can capture nuanced cor-
rectness across domains based on their strong language comprehension 
ability, positioning LLM-as-a-Judge (Gu et al., 2024a) a promising direc-
tion for future evaluation. The downstream tasks range from node-level 
and edge-level tasks to graph-level tasks, including node classification, 
link prediction, and graph classification, as well as more complex set-
tings like recommendation, question answering, section summarization, 
and graph-to-text generation. This broad coverage sufficiently evaluates 
the cross-domain generalization ability of LLM-based methods across di-
verse task types and application scenarios.

3.3.5.  Summary of heterogeneity
LLMs, pretrained on diverse datasets, are inherently capable of inte-

grating information from various sources into a unified semantic space. 
The reviewed studies show that LLM-integrated models can transfer 

Fig. 12. Illustration of dynamic instability in graphs. The figure presents three 
categories of dynamic instability over two timestamps (𝑡1 → 𝑡2): (1) Node Feature 
Dynamics, where node attributes change over time; (2) Structural Dynamics, 
showing newly added node (solid dark purple circle) and newly removed node 
(gray dashed circle); (3) New Node/Edge Types, depicting the emergence of 
entirely new node and relationship types, represented by a solid dark purple 
triangle and dashed edges.

knowledge across different graph domains without the need for domain-
specific retraining. By leveraging the generalizability of LLMs, these 
models are able to mitigate different forms of cross-domain heterogene-
ity, including textual attribute heterogeneity, multimodal attribute het-
erogeneity, and structural heterogeneity. As a result, they demonstrate 
superior performance in addressing cross-domain heterogeneity, partic-
ularly in scenarios where traditional methods are ineffective or inappli-
cable due to the lack of sufficient training data. Experiments in these 
papers show improved performance on cross-domain node classifica-
tion, link prediction, and graph classification tasks when LLMs are used 
to either encode heterogeneous content or assist in aligning representa-
tions.

3.4.  Dynamic instability in graphs

Many real-world systems, from social networks to knowledge bases, 
are best represented as graphs whose structure and attributes change 
over time (see Fig. 12). This constant evolution implies a shifting dis-
tribution, where patterns observed in the past may not hold true in the 
future. While gradual evolution poses modeling challenges, the situa-
tion becomes significant when the graph undergoes rapid, large-scale, 
or highly unpredictable changes that alter the graph’s characteristics 
and create significant challenges for model training and inference (Han 
et al., 2022).

Dynamic graphs’ instability is challenging to model due to their tem-
poral and structural variability (Rossi et al., 2020). In static settings, 
models learn stable representations from collected graph data. In con-
trast, dynamic graphs experience frequent changes in nodes, edges, and 
attributes. Models struggle to generalize without adaptive mechanisms 
when faced with structural shifts or abrupt transformations (Sankar 
et al., 2020). Before the introduction of LLMs, researchers addressed dy-
namic graphs using snapshot-based and incremental methods. These ap-
proaches discretized the graph into time-specific snapshots for indepen-
dent training (Pareja et al., 2020), or updated models as new nodes and 
edges appeared (Kazemi et al., 2020). While effective in some settings, 
such methods often rely on localized updates and struggle to capture 
long-range temporal dependencies, particularly in large-scale or rapidly 
changing graphs.

LLMs have recently emerged as a powerful new tool with the poten-
tial to address some challenges in dynamic graph learning (Fig. 13). By 
leveraging their strengths in natural language understanding, sequen-
tial data processing, few-shot learning, and complex reasoning, LLMs 
offer novel ways to interpret and model graph dynamics. They can pro-
cess textual information associated with nodes or edges and understand 
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Table 4 
LLM-based methods for handling dynamic instability in graphs, grouped by tasks, with representative methods, datasets, metrics, and downstream tasks.
Domain Category Method Typical Datasets Common Metrics Downstream Tasks
Querying and 
Reasoning

Forecasting & 
Reasoning

ICL (Lee et al., 
2023b)

WIKI (Leblay & Chekol, 2018), 
YAGO (Mahdisoltani et al., 2013), 
ICEWS14 (García-Durán et al., 2018), 
ICEWS18 (Jin et al., 2020b)

MRR, Hits@N Link Prediction

zrLLM (Ding 
et al., 2024)

ICEWS (Bossard et al., 2015), ACLED (Raleigh 
et al., 2010)

MRR, Hits@N Link Prediction

CoH (Xia et al., 
2024b)

ICEWS14 (García-Durán et al., 2018), 
ICEWS18 (Jin et al., 2020b), 
ICEWS05-15 (García-Durán et al., 2018)

MRR, Hits@N Link Prediction

TG-LLM (Xiong 
et al., 2024a)

TGQA (Xiong et al., 2024b), TimeQA (Chen et al., 
2021), TempReason (Tan et al., 2023)

F1, Accuracy, Exact 
Match

Temporal Reasoning

LLM4DyG (Zhang 
et al., 2024h)

Enron (Shetty & Adibi, 2004), DBLP (Tang et al., 
2008), Flights (Schäfer et al., 2014)

Accuracy, F1, Recall Spatial-Temporal Reasoning, 
Graph Reasoning and Querying, 
Link Prediction

QA & Interpretability TimeR4 (Qian 
et al., 2024)

MULTITQ (Chen et al., 2023b), 
TimeQuestions (Jia et al., 2021)

Hits@N Temporal Knowledge Graph 
Question Answering

Gen-
TKGQA (Gao 
et al., 2024b)

CronQuestion (Saxena et al., 2021), 
TimeQuestions (Jia et al., 2021)

Hits@N Temporal Knowledge Graph 
Question Answering

Unveiling 
LLMs (Bronzini 
et al., 2024)

FEVER (Thorne et al., 2018), 
CLIMATE-FEVER (Diggelmann et al., 2021)

Precision, Recall, F1, 
ROC AUC, Accuracy

Claim Verification

Generating and 
Updating

Generating 
Structures

FinDKG (Li & 
Sanna Passino, 
2024)

WIKI (Leblay & Chekol, 2018), 
YAGO (Mahdisoltani et al., 2013), 
ICEWS14 (García-Durán et al., 2018)

MRR, Hits@N Link Prediction

GenTKG (Liao 
et al., 2024)

ICEWS14 (García-Durán et al., 2018), 
ICEWS18 (Jin et al., 2020b), GDELT (Leetaru & 
Schrodt, 2013), YAGO (Mahdisoltani et al., 2013)

Hits@N Link Prediction

Up To 
Date (Hatem 
et al., 2024)

Wikidata (Vrandečić & Krötzsch, 2014) Accuracy, Response 
Rate

Fact Validation, Question 
Answering

PPT (Xu et al., 
2023)

ICEWS14 (García-Durán et al., 2018), 
ICEWS18 (Jin et al., 2020b), 
ICEWS05-15 (García-Durán et al., 2018)

MRR, Hits@N Link Prediction

LLM-DA (Wang 
et al., 2024b)

ICEWS14 (García-Durán et al., 2018), 
ICEWS05-15 (García-Durán et al., 2018)

MRR, Hits@N Link Prediction

Generating Insights 
& Representations

TimeL-
lama (Yuan 
et al., 2024)

ICEWS14 (García-Durán et al., 2018), 
ICEWS18 (Jin et al., 2020b), 
ICEWS05-15 (García-Durán et al., 2018)

Precision, Recall, F1, 
BLEU, ROUGE

Event Forecasting, Explanation 
Generation

RealTCD (Li 
et al., 2024e)

Simulation Datasets (Li et al., 2024e) Structural Hamming 
Distance, Structural 
Interventional 
Distance

Temporal Causal Discovery, 
Anomaly Detection

DynLLM (Zhao 
et al., 2024b)

Tmall (Tianchi, 2018b), Alibaba (Tianchi, 2018a) Recall@K, NDCG@K Dynamic Graph 
Recommendation, Top-K 
Recommendation

Evaluation and 
Application

Model Evaluation Dynamic-
TempLAMA (Mar-
gatina et al., 
2023)

DYNAMICTEMPLAMA (Dhingra et al., 2022) Accuracy, MRR, 
ROUGE, F1

Temporal Robustness Evaluation, 
Factual Knowledge Probing

DARG (Zhang 
et al., 2024g)

GSM8K (Cobbe et al., 2021), BBQ (Parrish et al., 
2022), BBH Navigate (Suzgun et al., 2023), BBH 
Dyck Language (Suzgun et al., 2023)

Accuracy, 
Complexity-Induced 
Accuracy Retention 
Rate, Exact Match, 
Accuracy

Mathematical Reasoning, Social 
Reasoning, Spatial Reasoning, 
Symbolic Reasoning

Downstream 
Applications

Anoma-
lyLLM (Liu 
et al., 2024d)

UCI Messages (Opsahl & Panzarasa, 2009), 
Blogcatalog (Tang & Liu, 2009)

AUC Anomaly Detection

MoMa-
LLM (Hon-
erkamp et al., 
2024)

iGibson scenes (Li et al., 2021a) AUC, Recall Semantic Interactive Object 
Search

TRR (Koa et al., 
2024)

Reuters Financial News (Ding et al., 2014) AUROC Event Detection

the semantic context driving structural changes. This infusion of seman-
tic reasoning capabilities opens promising research routes for creating 
more robust and adaptive models capable of navigating the complexi-
ties of dynamic instability. The relevant references and categorization 
are presented in Table 4.

3.4.1.  Querying and reasoning in dynamic graphs
This category includes work that uses LLMs to query, reason about, 

or retrieve knowledge from dynamic graphs. These approaches analyze 
or validate existing graph structures rather than actively generating or 
modifying node and edge features. LLMs act as information retrieval or

Expert Systems With Applications 298 (2026) 129643 

19 



M. Li et al.

Fig. 13. A unified framework integrating LLMs for addressing dynamic insta-
bility in graphs. Dynamic changes in node features, structure, and new node or 
edge types are captured by temporal graph embeddings. These dynamic embed-
dings, combined with context (triples and historical facts), serve as inputs to the 
LLM. The LLM then performs reasoning tasks and outputs the final prediction 
or response.

reasoning tools, querying, analyzing, or inferring over existing graph 
structures and knowledge to discover new relationships or validate 
known ones. The key aspect is that LLMs assist in analyzing and un-
derstanding the graph’s dynamic evolution.

(1) Traditional Methods Before the emergence of LLMs, querying 
and reasoning on dynamic graphs relied on specialized graph represen-
tation learning and temporal modeling methods. For example, Tempo-
ral Graph Networks (TGNs) (Rossi et al., 2020), and related methods 
use memory modules combined with graph neural networks to process 
continuous-time dynamic graphs and capture node evolution. Methods 
like DyRep (c)Trivedi, Farajtabar) and TGAT (Xu et al., 2020) focus on 
learning node representations that reflect temporal changes in neigh-
borhood structures and interaction patterns. For reasoning on Tempo-
ral Knowledge Graphs (TKGs), such as link prediction, traditional ap-
proaches employed embedding techniques or rule-based systems to cap-
ture changes in entities and relations over time (Su et al., 2024). While 
effective for specific tasks, these methods struggle to fully use rich se-
mantic information and face challenges in handling zero-shot relations 
or performing complex multi-step reasoning (Cai et al., 2023).

(2) Forecasting and Reasoning Current research now explores the 
semantic understanding and reasoning capabilities of LLMs to address 
querying and reasoning challenges in dynamic graphs, particularly for 
TKG forecasting and reasoning. One surprising finding is that LLMs, even 
without fine-tuning, can achieve performance comparable to specialized 
TKG models on forecasting tasks simply by using In-Context Learning 
(ICL) with historical facts converted to text. Their performance holds 
even when entity names are replaced with numerical IDs, suggesting 
LLMs can leverage structural and temporal patterns in the context (Lee 
et al., 2023b). To deepen LLM reasoning, CoH (Chain-of-History) (Xia 
et al., 2024b) proposes a method to explore high-order historical infor-
mation step-by-step, overcoming the limitation of relying only on first-
order history and improving temporal reasoning, especially as a plug-in 
module for graph-based models. TG-LLM (Xiong et al., 2024a) trains 
an LLM to translate text context into a latent temporal graph and then 
uses Chain-of-Thought (CoT) reasoning over this graph, enhancing gen-
eralizable temporal reasoning. To address the challenge of unseen rela-
tions in TKGs, zrLLM (Ding et al., 2024) uses LLMs to generate semantic 
representations from relation descriptions, enabling embedding models 
to recognize zero-shot relations via semantic similarity. Furthermore, 
LLM4DyG (Zhang et al., 2024h) introduces a systematic evaluation of 
LLMs’ spatial-temporal understanding on general dynamic graphs. It in-
troduces a benchmark and proposes the “Disentangled Spatial Tempo-
ral Thoughts” prompting method to improve performance on tasks like 
link prediction and node classification, although challenges remain with 
large or dense dynamic graphs.

(3) QA and Interpretability Another line of research focuses on us-
ing LLMs for more complex information retrieval from dynamic graphs, 
such as Temporal Knowledge Graph Question Answering (TKGQA), and 
understanding the LLMs’ own reasoning processes. TKGQA requires un-
derstanding complex temporal constraints in questions and retrieving 
answers from dynamic knowledge, a task where traditional methods 
struggle with semantics. TimeR4 (Qian et al., 2024) introduces a time-
aware Retrieve-Rewrite-Retrieve-Rerank framework. It uses LLMs and 
retrieved TKG facts to handle time constraints and reduce temporal hal-
lucination by rewriting questions and reranking retrieved facts. Simi-
larly, GenTKGQA (Gao et al., 2024b) employs a two-stage approach: the 
LLM first mines constraints to guide subgraph retrieval, then generates 
answers by fusing GNN signals with text representations via instruction 
tuning. These methods demonstrate the potential of retrieval-augmented 
LLMs for complex dynamic knowledge QA. Additionally, to understand 
how LLMs process factual knowledge, Unveiling LLMs (Bronzini et al., 
2024) uses dynamic knowledge graphs as a tool to interpret LLM reason-
ing. It decodes internal token representations layer-wise during fact ver-
ification, revealing how factual representations evolve within the LLM.

3.4.2.  Generating and updating in dynamic graphs
This category includes papers that use LLMs to actively generate new 

nodes, edges, or their features or to update dynamic graph structures. 
These approaches typically serve to complete, reconstruct, or adapt the 
graph structure to dynamic changes. LLMs function as generators or up-
daters, creating new node/edge attributes or descriptions to fill in miss-
ing information or updating the graph structure in real time based on 
changes. The focus is on utilizing LLMs’ generative capabilities to ac-
tively create or modify the graph structure to cope with dynamics.

(1) Traditional Methods Before LLMs became widespread, address-
ing dynamic graph generation and updates relied mainly on graph 
generative models and dynamic embedding techniques. Models like 
GraphRNN (You et al., 2018) and GRAN (Liao et al., 2019) focused on 
generating static graph structures; extending them to dynamic settings 
proved challenging. For updating representations in dynamic graphs, 
methods like DyGEM (Goyal et al., 2018) adapted node embeddings at 
each time step to reflect graph changes. Knowledge graph updates often 
depended on manual editing, rule-based systems, or specific database 
maintenance procedures, which were difficult to automate and could 
not respond rapidly to real-world changes. These traditional methods 
generally lacked the ability to use external unstructured information 
(like text) to guide updates and had limitations in generating semanti-
cally consistent and structurally complex graph evolution patterns.

(2) Generating Structures Researchers now use LLMs’ generative 
power to create or maintain evolving knowledge structures. The FinDKG 
(Li & Sanna Passino, 2024) demonstrates the potential of LLMs as dy-
namic knowledge graph (DKG) generators; their ICKG model builds a 
DKG directly from financial news text to capture market trends. To ad-
dress the issue of outdated information in knowledge graphs, Up To Date 
(Hatem et al., 2024) proposes a method combining LLM reasoning and 
RAG. It automatically identifies potentially outdated facts in a KG and 
retrieves information from trusted sources to generate accurate correc-
tions, enabling automated KG maintenance. For TKG completion and 
forecasting, PPT (Xu et al., 2023) converts TKG facts and time intervals 
into prompted natural language sequences, using a masked language 
modeling task for completion. GenTKG (Liao et al., 2024) also adopts a 
generative forecasting approach for TKGs. It uses a retrieval-augmented 
framework with parameter-efficient instruction tuning to generate fu-
ture facts, achieving strong performance and generalization even with 
minimal training data. Furthermore, LLM-DA (Wang et al., 2024b) inno-
vatively uses an LLM to generate temporal logical rules from historical 
TKG data to guide reasoning. A dynamic adaptation strategy updates 
these rules based on new events, allowing the model to adapt to knowl-
edge evolution without retraining the LLM.

(3) Generating Insights and Representations Beyond directly 
generating graph structures or facts, LLMs generate higher-level
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information like explanations, causal hypotheses, or enhanced node rep-
resentations to aid dynamic graph analysis and applications. TimeL-
lama (Yuan et al., 2024) focuses on explainable temporal reasoning. 
It not only predicts future events but also uses an LLM to generate nat-
ural language explanations based on historical TKG paths, increasing 
model trustworthiness. To explore the underlying mechanisms of dy-
namic systems, RealTCD (Li et al., 2024e) employs LLMs to process tex-
tual information (e.g., system logs) and integrate domain knowledge. 
Through LLM-guided meta-initialization, it improves the quality of tem-
poral causal discovery, especially in industrial scenarios lacking inter-
vention targets. For dynamic recommendation systems, DynLLM (Zhao 
et al., 2024b) uses LLMs to generate multi-dimensional user profiles 
(e.g., interests, preferred brands) and their embeddings from the tex-
tual features of purchase histories. These LLM-generated, dynamically 
updated user profiles enrich user node information, improving the rec-
ommendation system’s ability to adapt to changing user preferences. 
These studies show that LLMs can produce basic graph elements and 
high-level semantic information, offering new ways to understand and 
model the complex evolution of dynamic graphs.

3.4.3.  Evaluation and application in dynamic graphs
This category includes work that uses LLMs to evaluate the effective-

ness of dynamic graph learning models or apply LLMs in downstream 
tasks such as link prediction, node classification, or recommendation 
systems. LLMs serve as evaluation tools or modules within downstream 
applications, assessing the performance of dynamic graph models or pro-
viding additional guidance during training or inference. The emphasis 
is on using LLMs’ comparative, assessment, or decision-support capabil-
ities to handle tasks in dynamic environments.

(1) Traditional Methods Before using LLMs in these tasks, re-
searchers relied on models that predicted future links or node states 
based on historical graph data (Jin et al., 2020b). However, standard 
evaluation metrics often fail to capture the predictions’ semantic qual-
ity or real-world plausibility (Xiong et al., 2025). These metrics also 
struggled to assess how models handled unexpected structural changes 
or evolving concepts. In downstream applications, tasks such as dynamic 
anomaly detection typically use statistical methods to identify shifts in 
graph structure or connectivity patterns (Paranjape et al., 2017). Dy-
namic recommendation systems often relied on sequential models that 
analyzed user interaction histories (Hidasi et al., 2016) or time-aware 
collaborative filtering. Although these approaches were effective for spe-
cific problems, they lacked the ability to perform deeper semantic rea-
soning.

(2) Model Evaluation LLMs provide new perspectives for evaluat-
ing model performance and robustness in dynamic settings. Dynamic-
TempLAMA (Margatina et al., 2023) presents a dynamic benchmarking 
framework specifically designed to assess how well pretrained language 
models (MLMs) handle temporal concept drift-the evolution of factual 
knowledge over time. The framework dynamically creates time-sensitive 
test sets from Wikidata and evaluates MLMs through multiple views 
(probing, generation, scoring) to determine if their internal knowledge is 
outdated. DARG (Zhang et al., 2024g) addresses the limitations of static 
benchmarks by proposing a method to dynamically generate new eval-
uation data. It introduces changes to the reasoning graphs of existing 
benchmark samples to create novel test data with controlled complex-
ity and diversity, using a code-augmented LLM to ensure label correct-
ness. This enables adaptive evaluation of LLMs’ reasoning capabilities 
as they evolve. Both works highlight the importance of moving beyond 
static, snapshot-based evaluations toward more dynamic, adaptive ap-
proaches, especially as both models and world knowledge constantly 
change.

(3) Downstream Applications LLMs are also embedded directly 
into downstream applications that process dynamic graph data, serving 
as core reasoning or decision-making components. AnomalyLLM (Liu 
et al., 2024d) uses LLM knowledge for few-shot anomaly edge detection 
in dynamic graphs. By aligning edge representations with word embed-

ding prototypes and using in-context learning, the method effectively 
identifies emerging anomaly types with few labeled examples, demon-
strating LLMs’ potential for adapting to changing environments like cy-
bersecurity. In robotics, MoMa-LLM (Honerkamp et al., 2024) integrates 
an LLM with dynamically updated, open-vocabulary scene graphs rep-
resenting an explored environment. The LLM reasons over this evolving 
graph to guide a mobile robot in long-horizon, interactive object search 
tasks, showcasing how LLMs can integrate dynamic spatial-semantic in-
formation for high-level planning. The financial sector also leverages 
LLMs; TRR (Temporal Relational Reasoning) (Koa et al., 2024) uses an 
LLM-based framework mimicking human cognition (memory, attention) 
to detect potential stock portfolio crashes. It reasons over dynamically 
generated temporal relational information extracted from news to assess 
the aggregated impact of evolving events, which is useful for rare events 
lacking historical data. These applications demonstrate LLMs acting as 
powerful reasoning engines in complex real-world tasks that require un-
derstanding and responding to dynamically changing structured infor-
mation.

3.4.4.  Evaluation for handling dynamic instability in graphs
We review the evaluation pipeline of LLM-based methods for ad-

dressing dynamic instability in graphs, covering benchmark datasets, 
evaluation metrics, and downstream tasks (see Table 4). Commonly 
used datasets include temporal knowledge graph benchmarks such as 
ICEWS14 (García-Durán et al., 2018), ICEWS18 (Jin et al., 2020b), 
ICEWS05-15 (García-Durán et al., 2018), YAGO (Mahdisoltani et al., 
2013), and WIKI (Leblay & Chekol, 2018) for link prediction and tempo-
ral reasoning. Event-based corpora such as ACLED (Raleigh et al., 2010), 
GDELT (Leetaru & Schrodt, 2013), and TempReason (Tan et al., 2023) 
are used for temporal forecasting, while domain-specific datasets like 
Enron (Shetty & Adibi, 2004), DBLP (Tang et al., 2008), Tmall (Tianchi, 
2018b), and Alibaba (Tianchi, 2018a) support communication analysis 
and recommendation. Temporal KGQA relies on MULTITQ (Chen et al., 
2023b), TimeQuestions (Jia et al., 2021), and CronQuestion (Saxena 
et al., 2021), and claim verification uses FEVER (Thorne et al., 2018) 
and CLIMATE-FEVER (Diggelmann et al., 2021). Anomaly and event 
detection adopt UCI Messages, Blogcatalog, iGibson scenes, and Reuters 
Financial News.

Evaluation metrics vary by task: MRR and Hits@N dominate ranking 
tasks; Accuracy, F1, Precision, Recall, and ROC-AUC are applied in clas-
sification; BLEU, ROUGE, and Exact Match assess generative tasks; Re-
call@K and NDCG@K measure recommendation; and SHD or SID evalu-
ate temporal causal discovery. AUC or AUROC are common for anomaly 
detection.

The surveyed methods span diverse downstream tasks, including link 
prediction, temporal reasoning, temporal KGQA, claim verification, fact 
validation, dynamic graph recommendation, temporal causal discovery, 
event forecasting, and anomaly or event detection. This diversity high-
lights the capability of LLMs to integrate temporal reasoning and exter-
nal knowledge for robust performance in evolving graph environments.

3.4.5.  Summary of dynamic instability
The integration of LLMs with dynamic graph learning presents a 

promising direction for addressing the inherent challenges posed by 
evolving graph structures. Leveraging their powerful sequence model-
ing capabilities and the flexibility of natural language encoding, LLMs 
can effectively adapt to distribution shifts and temporal variations that 
traditional static graph models struggle to capture. Moreover, LLMs can 
incorporate external temporal knowledge into the graph reasoning pro-
cess, enhancing predictive power and enabling anticipation of future 
changes rather than merely reacting to them. Early empirical evidence 
suggests that LLM-augmented dynamic graph models exhibit greater ro-
bustness and sustained performance over time. Nevertheless, these bene-
fits come with increased computational costs and complexity, requiring 
careful architectural design and error mitigation strategies to prevent 
error propagation and maintain reliability in long-term deployment.
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4.  Limitations, challenges, and future directions

This section builds upon the preceding analysis to consolidate key 
challenges and limitations in graph-based learning with LLMs, and to 
outline potential directions for future research. The discussion is orga-
nized around several considerations, including efficiency and scalabil-
ity, explainability, fairness, and faithfulness, and security, robust-
ness, and governance, which together reflect both the current barriers 
and the broader goals for advancing LLM-graph integration.

4.1.  Efficiency and scalability

Scalability is a key challenge in integrating LLMs with graph data, 
given the high memory and computation costs of large, heterogeneous, 
and dynamic graphs. We summarize efficiency challenges across scenar-
ios and explore ways to improve tractability, compactness, and inference 
speed.

4.1.1.  Incompleteness
LLM-based methods for graph completion show promise in gener-

ating missing nodes, edges, or attributes, but they also introduce risks 
of hallucination and structural inconsistency. To improve the fidelity of 
generated content, future research should explore structure-constrained 
decoding, confidence-aware integration, and post-hoc validation using 
GNNs or external knowledge bases (b)Sehwag, Papasotiriou). Incorpo-
rating structural priors from graphs directly into training objectives may 
further enhance the alignment between textual reasoning and graph 
topology (Zhang et al., 2024f). At the same time, reducing representa-
tional redundancy is critical for scalability, motivating the development 
of compact graph-text co-representations. For example, injecting struc-
ture tokens or refactoring sequence layouts can reduce the need for full-
graph serialization during inference (Coppolillo, 2025; Xue et al., 2023). 
Besides, efficiency-oriented designs should also consider concrete re-
source metrics such as sequence length, memory usage, and per-sample 
or per-token computation cost (Wang et al., 2024e).

4.1.2.  Imbalance
Imbalanced distributions are common in real-world graphs, where a 

few dominant classes overshadow long-tail entities that often lack suffi-
cient structural and semantic support (Guo et al., 2024; Ko et al., 2024). 
Uniformly applying LLMs across all samples is inefficient and may over-
fit majority patterns while underperforming on minority nodes. More-
over, hallucinations in underrepresented regions pose reliability risks, 
especially when topological signals are weak (Zhang et al., 2024i). To 
mitigate these issues, future research should consider selective LLM in-
vocation for hard or minority-class cases, while using GNNs for rou-
tine instances and transferring LLM knowledge into lightweight mod-
els via parameter-efficient tuning (Dettmers et al., 2023; Hu et al., 
2022). Structure-aware validation modules that cross-check LLM out-
puts against graph-derived patterns can improve robustness (Wei et al., 
2023), and a promising direction is to construct joint text-graph causal 
representations to help models infer the semantic origins of structural 
sparsity and synthesize logically grounded virtual connections (Xu et al., 
2024a).

4.1.3.  Cross-domain heterogeneity
Graphs that span multiple domains or modalities often exhibit het-

erogeneity in node types, attribute formats, and structural patterns, 
which increases prompt length and introduces misalignment between 
textual and topological inputs (Cui et al., 2024; He et al., 2024a). Ex-
isting methods struggle to handle these inconsistencies, as they typ-
ically rely on shallow normalization or isolated attribute encoding, 
and LLMs themselves lack permutation invariance when processing 
graph structures (Zhao et al., 2023). To address these limitations, fu-
ture efforts should explore context-aware modeling that jointly en-
codes multimodal attributes, local connectivity, and task-specific sig-
nals. Symmetry-preserving techniques such as contrastive learning or 

explicit prompt designs can help models distinguish meaningful struc-
tural variations from order artifacts (Ye et al., 2024). Additionally, 
tighter LLM-GNN integration-via dual encoders or knowledge distilla-
tion from graph-level GNNs-may provide a more balanced trade-off be-
tween semantic richness and structural fidelity (Perozzi et al., 2024; 
Tian et al., 2024).

4.1.4.  Dynamic instability
In dynamic graphs, frequent structural or attribute updates intro-

duce substantial overhead for model recomputation and pose challenges 
for maintaining temporal consistency (Lee et al., 2023b). Current LLM-
based approaches often rely on full re-encoding or static snapshots, 
which fail to reflect evolving semantics and result in stale or inaccu-
rate reasoning (Xiong et al., 2024a). To overcome these limitations, fu-
ture research should incorporate time-aware prompting, localized sub-
graph updates, and selective verification to reduce redundant computa-
tion (Wang et al., 2024e). Caching frequently accessed substructures or 
intermediate representations can further improve efficiency. More im-
portantly, integrating GNNs with LLMs for temporal causal reasoning, 
along with pretraining strategies that embed temporal priors, may help 
models adapt to semantic drift and support robust inference over evolv-
ing graph states (Ding et al., 2024; Xia et al., 2024b).

4.2.  Explainability, fairness, and faithfulness

LLM-based graph systems pose serious challenges in explainability, 
fairness, and faithful reasoning-especially in scenarios involving incom-
plete data, long-tail distributions, domain shifts, and temporal updates. 
While current approaches offer partial solutions, their limitations in in-
terpretability, causal alignment, and robustness across scenarios call for 
more principled advancements.

4.2.1.  Incompleteness
Incomplete graphs often result in LLM outputs that lack faithful-

ness, as the underlying reasoning is not grounded in observable evidence 
(Chen et al., 2023a; b)Sehwag, Papasotiriou; Xu et al., 2024b). This is-
sue is exacerbated by decoding processes that fail to enforce topologi-
cal constraints and by the absence of systematic post-generation verifi-
cation. Future work should incorporate structure-constrained decoding 
objectives and apply graph consistency losses during training (Zhang 
et al., 2024f), while complementing generation with post-hoc valida-
tion using GNN-based scorers or confidence filters (Chai et al., 2023; 
Wang et al., 2024c). Furthermore, reasoning fidelity deteriorates signif-
icantly when only partial graph observations are available (Xu et al., 
2024b). To address this, prompting strategies should explicitly encode 
subgraph structures to help LLMs reason over local topological contexts. 
In addition, iterative refinement mechanisms that alternate between re-
trieval, reasoning, and validation can simulate GNN-style aggregation 
while supporting auditable evidence chains.

4.2.2.  Imbalance
Graph imbalance not only degrades predictive performance but also 

undermines explanation stability and reliability. Due to sparse seman-
tics and weak connectivity, LLMs may struggle to generate faithful ratio-
nales for long-tail nodes. Moreover, existing interpretability tools rarely 
account for such imbalance, leading to inconsistent explanations under 
input perturbations. Future work should explore causal mechanisms un-
derlying topological sparsity and use LLMs to generate logically consis-
tent virtual subgraphs to restore class-level balance (Guo et al., 2024). 
At the same time, interpretability evaluation should emphasize stability: 
explanations for minority-class nodes should remain consistent across 
counterfactual edits or input augmentations, and validation modules 
should reject rationales that do not correspond to truly discriminative 
substructures.
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4.2.3.  Cross-domain heterogeneity
Inconsistencies in label semantics, graph patterns, and textual at-

tributes across domains make it difficult for LLMs to produce general-
izable explanations. These mismatches often introduce domain-specific 
biases that harm fairness and reasoning quality (Dong et al., 2023; Gal-
legos et al., 2024). Current models lack the ability to maintain explana-
tion coherence when transferred across domains (Lucic et al., 2022; Ying 
et al., 2019). Future systems should develop domain-invariant rationale 
templates and establish multi-level auditing frameworks covering em-
bedding spaces, output distributions, and textual justifications to detect 
and mitigate explanation drift. Additionally, aligning the structural rea-
soning paths produced by GNNs with the textual rationales generated by 
LLMs can bridge the gap between semantics and topology and enhance 
explanation faithfulness.

4.2.4.  Dynamic instability
The evolving nature of real-world graphs introduces temporal varia-

tions that challenge the stability and trustworthiness of model explana-
tions. As nodes and edges change over time, previously valid rationales 
may become outdated or misleading, yet current systems lack temporal 
auditing mechanisms. Future work should introduce rolling, time-aware 
auditing protocols that explicitly link model outputs with graph update 
events (Dong et al., 2023). Moreover, enabling executable explanations-
where LLM-generated rationales are translated into symbolic constraints 
or verifiable subgraph traces-can improve the reliability and traceability 
of reasoning under temporal drift (Lyu et al., 2023).

4.3.  Security, robustness, and governance

As graph-LLM systems become increasingly applied in high-stakes 
domains such as finance, healthcare, and recommendation, they face 
growing vulnerabilities arising from incomplete information, class im-
balance, cross-domain inconsistency, and evolving graph structures. 
These challenges expose the system to risks including data poisoning, 
prompt injection, structure manipulation, and adversarial generaliza-
tion, many of which are amplified by the flexible yet opaque behavior 
of LLMs.

4.3.1.  Incompleteness
In settings where graph data is sparse or noisy, even minor pertur-

bations to node or edge attributes can lead to significant shifts in com-
pletion outcomes, compromising the integrity of the generated graph 
(Zhang et al., 2019b; Zügner et al., 2018). Similarly, LLM-augmented 
retrieval systems are vulnerable to prompt-level attacks, where indirect 
injection or document poisoning misleads the model’s response (De Ste-
fano et al., 2024). To improve robustness, future work should investigate 
multi-layer defenses, including data-level sanitization and edge pruning, 
model-level protection through graph denoising techniques such as GN-
NGuard (Zhang & Zitnik, 2020), and certification-based methods like 
randomized smoothing to quantify the system’s tolerance under adver-
sarial conditions (Bojchevski & Günnemann, 2019; Wang et al., 2021a).

4.3.2.  Imbalance
Nodes associated with rare categories or low connectivity often lack 

sufficient structural context, making them particularly susceptible to ad-
versarial influence; subtle perturbations can alter neighborhood aggre-
gation or trigger class boundary shifts (Jin et al., 2020a). Moreover, few-
shot trigger constructions may induce undesirable distributional shifts 
in LLM outputs. To address these issues, future systems should adopt 
targeted defenses for long-tail nodes, including structural consistency 
checks and trigger detection via adversarial training regimes that ex-
pose the model to rare-case manipulations.

4.3.3.  Cross-domain heterogeneity
When LLM-based models are deployed across domains with differing 

label semantics, structure formats, or template designs, inconsistencies 

can be exploited to induce behavior shifts or prompt corruption. Exist-
ing systems often lack robust controls over prompt templates or graph 
encodings, making them vulnerable to injection and escalation attacks 
(De Stefano et al., 2024). Looking forward, stronger domain-level gover-
nance is needed, including adversarial evaluation prior to deployment, 
enforcement of signed prompt templates, and whitelist-based control 
over structural tokens to prevent unauthorized modifications.

4.3.4.  Dynamic instability
Dynamic graphs introduce further complexity, as attackers may in-

ject or remove connections during critical time windows or log adversar-
ial traces to shape long-term model behavior (Jin et al., 2020a). These 
time-sensitive attacks are often stealthy and hard to reverse, leading to 
compounding damage (Wang et al., 2021a). Future directions should 
prioritize rolling-window detection and temporal rollback mechanisms, 
coupled with causal tracing of performance degradation to structural 
changes. Additional safeguards such as time-aware scoring and path-
verifiable explanation generation can help separate legitimate evolution 
from malicious interference.

5.  Conclusion

This survey has presented a comprehensive and systematic review 
of how recent advances in LLMs can be leveraged to address four fun-
damental, data-centric challenges in graph learning: incompleteness of 
structures or attributes, severe imbalance in node and edge distributions, 
cross-domain heterogeneity in semantics and structure, and dynamic in-
stability arising from evolving topologies and interactions. To achieve 
this, we conducted an extensive literature collection and categorization, 
and organized representative methods. We further summarized bench-
mark datasets and evaluation metrics used in existing studies, assessed 
empirical trends. In addition, we identified open technical challenges 
and outlined promising future research directions.

We have synthesized a broad spectrum of LLM-graph integration 
strategies under this framework, demonstrating how LLMs bring dis-
tinctive capabilities that complement purely graph-based approaches. 
In the context of incompleteness, LLMs apply semantic reasoning and 
draw upon external knowledge to infer missing attributes and relation-
ships, serving as intelligent imputers. For imbalanced graphs, they can 
generate synthetic samples and enrich feature spaces, thereby enhanc-
ing minority-class representations and mitigating bias. In heterogeneous 
graph scenarios, LLMs facilitate the unification of disparate modalities 
and domain-specific schemas into coherent embeddings, enabling effec-
tive cross-domain alignment. For dynamic graphs, their contextual and 
temporal reasoning allows for anticipating structural changes, explain-
ing evolution, and supporting continuous adaptation.

Looking ahead, the integration of LLMs with graph learning still 
faces important open questions. Improving efficiency and scalability is 
essential for large-scale or real-time applications, while enhancing inter-
pretability and trustworthiness will be critical for deployment in high-
stakes domains such as healthcare and finance. Developing mechanisms 
for continual adaptation without catastrophic forgetting remains a sig-
nificant challenge, as does bridging the gap between textual knowledge 
encoded in LLMs and structural graph signals. In addition, controlling 
hallucination in LLM-generated graph content is vital to ensure both 
semantic validity and structural consistency.

In conclusion, the convergence of LLMs and graph learning marks a 
promising new direction, combining the deep semantic understanding 
of natural language processing with the structured relational modeling 
of graph machine learning. This synergy has already yielded models 
that are more robust, knowledgeable, and adaptable than those based 
on either technology alone. As research advances, we anticipate rapid 
progress toward graph learning systems with greater generality and in-
telligence, capable of reasoning effectively over the rich, dynamic net-
works that underpin real-world data.
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