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A B S T R A C T

In Graph Neural Networks (GNNs), a common feature across many datasets is the Power-law
Distribution of node degrees, where most nodes exhibit few connections, contrasting with a
small fraction that possesses a high number of links. This difference often introduces training
instability and compromises performance on tasks like node classification, particularly for
low-degree nodes. To tackle these challenges, we introduce RUNCL: Relationship Updating
Network with Contrastive Learning, a novel model designed to ensure that the model learns
more accurate node features, especially the features of low-degree nodes. Specifically, RUNCL
comprises a graph generation module that generates different neighborhood information graphs
based on the node feature graphs. The optimal graph selection module selects the neighborhood
information graph that best reflects the relationship between nodes and a contrastive learning
module to learn more accurate node embeddings by contrasting positive and negative samples.
We evaluate the performance of RUNCL on six datasets, and the experimental results demon-
strate its effectiveness. The model exhibited an improvement of 2.5% in the testset. Moreover,
the model’s performance boosted to 6% when the testset only included low-degree nodes.
The implementation and data are made available at https://github.com/pengyu-zhang/RUNCL-
Relationship-Updating-Network-with-Contrastive-Learning.

1. Introduction

Graphs are a kind of data structure that models a set of objects (nodes) and their relationships (edges) [1]. Graphs are essential
for effectively representing network structures, such as bibliographic [2] and social networks [3], as well as biomedical networks [4].
With a more accurate node relationship graph, Graph Neural Networks (GNNs) can capture complex relationships and rich semantics
that exist in real-world situations [5]. However, relationships in real-world graph data are often incomplete and contain errors,
making message passing in graph networks difficult. This will lead to a degradation in the performance of GNN models, especially
the low-degree nodes in graph data. Low-degree nodes have fewer connections for message passing, making it challenging for the
model to capture and exploit the relational intricacies effectively. For instance, in graph data, if node A has hundreds of edges while
node B has none at all, then the ability of the model to accurately learn and generalize relationships involving node B is substantially
hindered. This imbalance in the number of edges influences the model’s learning process, potentially causing biases and affecting
the overall predictive accuracy and robustness of the GNN model.

Hence, graph structure learning, which uses raw graph data to estimate graph quantities more accurately, has emerged as a
promising solution for graph representation learning [6]. This approach can address the issue of false links in graph data and improve
the accuracy of downstream tasks by providing more accurate node relationships. However, many current methods parameterize
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Fig. 1. An example of relationship update.

ach edge locally, resulting in less accurate node relationships. For instance, missing data in authors’ publication records in the
itation network can lead to erroneous connections between authors in the original relationships, making it challenging to predict
esearch interests, as illustrated in Fig. 1. This introduces more noise into the graph networks, particularly for low-degree nodes.
dditional noise disproportionately affects their limited connections, making it even more challenging to capture and represent the
nderlying relationships accurately.

To tackle this challenge, we hypothesize that not only do existing relationships influence node embeddings, but newly constructed
elationships can also impact the embeddings. Typically, when there are more links between nodes, these nodes profoundly influence
ach other, and the model can more easily learn local information. However, if two nodes are distantly placed with no links between
hem, it becomes challenging for them to influence each other, even if their features are similar—this phenomenon is particularly
oticeable in low-degree nodes. In graph structure learning, creating previously non-existent links can allow the model to learn local
nd global information. For example, in a citation network, if author A has hundreds of edges, and author B is an isolated node
ith no edges, but A and B have similar research interests, constructing a link between A and B could enable the model to learn

icher information for the isolated node B.
To better uncover the local and global information of low-degree nodes and isolated nodes, we have also introduced a graph

ontrastive learning module which has been widely applied in computer vision and natural language processing [7–11]. Identifying
ore negative samples of low-degree and isolated nodes allows for more refined discrimination between the essential connective

eatures and the incidental or noisy associations. This can enhance the robustness and generalizability of the model, enabling
t to better capture and represent the nodes’ intrinsic structural and attributive properties despite their sparse connectivity or
solated nature in the graph, improving the overall effectiveness and accuracy of the graph neural network in various downstream
asks [12,13].

We introduce RUNCL: Relationship Updating Network with Contrastive Learning. We use the graph generation module to
effectively use the node features in generating the node feature graph. The optimal graph construction module considers the
neighborhood information of the nodes in the graph and the available multiview information. By treating the multiview information
as observations of the optimal graph, we avoid bias that may arise in the process of selecting the best graph. Finally, in the
collaborative contrastive optimization module, we leverage the node feature graph and the node relationship graph as two views
to monitor each other collaboratively. The main contributions can be summarized as follows:

• We propose a novel model, RUNCL, which addresses the bias issue by injecting multi-order neighborhood information. The
model ensures that contrastive learning between different views can supervise each other and generate negative samples with
high quality.

• Since RUNCL can combine graph structure learning and cross-view contrastive learning. As a result, our model can capture
high-level factors in node embedding via contrastive learning, enabling its application to real-world datasets with very few
labels.

• We evaluate the performance of RUNCL on six publicly available datasets and compare it to the current state-of-the-art
baselines to demonstrate its effectiveness. The improvement verifies the rationality of the different modules across the datasets.

2. Related work

In this part, we examine previous studies on graph structure learning and contrastive learning, and highlight their relevance to
the current research.
2
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2.1. Graph Neural Network

The field of Graph Neural Networks (GNNs) aims to develop methods that enable deep neural networks to process and analyze
raph-structured data [14]. In recent years, researchers have been exploring ways to generalize traditional convolutional neural
etworks to the domain of graphs [15], and there are two main approaches to achieve this: spectral and non-spectral methods.
hese approaches seek to leverage the unique structure of graphs to enable more effective analysis and prediction of complex systems
hat can be represented as graphs. Spectral approaches process graphs using a spectral representation. For instance, based on [16],
onvolutional neural networks (CNNs) have been extended to signals defined on domains that do not have a translation group. This
eneralization allows for the analysis of data with more complex structures, such as graphs. By adapting convolutional operations
o these structures, the resulting models can extract meaningful features and achieve high performance on various tasks, such as
mage and graph classification, object recognition, and natural language processing. While [17] has been centered on expanding
he capabilities of convolutional neural networks beyond their traditional use on regular grids of low dimensions. On the other
and, [18] employed an alternative technique to acquire node embeddings, which relies on a localized first-order estimation of
pectral graph convolutions. This allows for the processing of large-scale graph data, by approximating the convolutional operations
nd reducing the computational complexity. In addition, [19] introduced a general approach for extracting locally connected regions
rom graphs. By doing so, the model can learn graph structure and node features for each node. Moreover, [20] proposed a method
or generating embeddings for nodes in a graph. This method allows for the inductive learning of node representations, which
eans that the model can generalize to unseen nodes that were not present during training. While [21] introduced a new type

f graph neural network, which leverages gated recurrent units to capture the information flow between nodes in a graph. This
ethod involves applying a set of recurrent units to update each node based on the features of its neighboring nodes. [22] proposed

n alternative Long Short-Term Memory (LSTM) structure for processing sequential data such as sentences. This approach utilizes
ecurrent steps to enable local and global information exchange between words in parallel. Furthermore, [23] studied the attention
echanism in graph neural networks (GNNs) and introduced a new method for incorporating attention into the propagation step.
his approach involves computing attention coefficients for each neighbor of a target node, which reflect their importance in the
omputation of the target node’s representation. Building on this work, [24] proposed a novel approach for modeling heterogeneous
raphs using a graph attention network. Their method incorporates both node-level and semantic-level attention, allowing for more
ffective modeling of the graph’s structure and content. [25] suggested a refined propagation method that utilizes personalized
ageRank and exploits the connection between graph convolutional networks and PageRank. This approach involves computing a
ersonalized PageRank score for each node in the graph, which reflects its importance in the graph structure.

In general, GNN models heavily rely on input graphs that are treated as ground truth. However, this approach has a limitation
hen dealing with uncertain and incomplete graph structures. This can be a significant challenge in real-world scenarios where
raph data is often noisy and incomplete due to missing or unreliable information. Which highlights the need for more robust and
daptive GNN models that can deal with uncertain and incomplete graphs.

.2. Graph structure learning

Graph structure learning is a relatively new research topic that has gained attention in recent years, with several works devoted
o it [26]. Many of these works have combined graph structure learning and graph neural networks to improve the performance of
ownstream tasks. For instance, the Bayesian GCNN [27] uses the adjacency matrix of the graph to combine features for joint
ptimization. This approach enables the model to capture uncertainty in the graph structure and generate robust predictions.
eanwhile, LDS [12] proposes a framework that can optimize and learn the structure of the GNN in an end-to-end manner. This
ethod aims to address the challenge of incomplete graphs by jointly inferring the graph structure and the model parameters.
ro-GNN [28] proposes a low-rank sparsity regularization for adversarial reconstruction. In this approach, the original graph is
econstructed using a combination of low-rank sparsity and feature smoothing regularization techniques. The goal is to mitigate the
egative effects of adversarial structure in the graph by producing a more robust and accurate representation. GEN [29] generates
ommunity structure graphs and observation models to fit the mechanisms of graph neural networks. For unsupervised graph
tructure learning, SUBLIME [30] generates a target from the original data and maximizes the agreement between the two graphs.
lso, the CoGSL model [31] extracts two basic views from the original graph and fuses the estimated views into the final view.

In contrast to the aforementioned graph structure learning methods, our goal is to explore graphs learned across different views
hat contain more than one type of node and relation.

.3. Contrastive learning

Contrastive learning-based models have achieved great success and have attracted numerous works by comparing positive and
egative samples [32,33]. DGI [34] constructs local patches and global summaries as positive pairs and uses infomax theory to
ontrast them. HeCo [35] is based on heterogeneous graphs and captures both local and high-order structures simultaneously,
llowing cross-view contrastive learning to extract both positive and negative examples. These models are often used in sentiment
nalysis, where the positive and negative examples are represented as vectors. Recently, TIFA-GCL [36] found that the promotion
f graph contrastive learning comes mainly from nodes with less annotated information and focuses on the uneven distribution of
nnotated information. DualGraph [37] investigates semi-supervised graph classification and proposes a framework to better use
3
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Fig. 2. Overall framework of our proposed model RUNCL, where takes three node relations as an example.

tasks by performing data augmentation on the original graphs. AD-GCL [39] proposes a method to enhance the ability of graph
convolutional networks to resist adversarial attacks.

However, most contrastive learning models rely on the input graphs as ground truth information, which poses a challenge when
dealing with uncertain or incomplete graph structures. This can limit the ability of the models to generalize to new, unseen graph
structures.

3. The proposed model: RUNCL

In this section, we will provide a detailed explanation of RUNCL, a neural network designed for semi-supervised node
classification with contrastive learning. The complete structure of the model is illustrated in Fig. 2.

3.1. Problem formulation

The graph 𝐺 = (𝑉 ,𝐸) is utilized in this study, where 𝑉 and 𝐸 represent the sets of nodes and edges, respectively. The semi-
supervised node classification task requires the association of labels with only a subset of the nodes, specifically 𝑉𝐿 =

{

𝑣1, 𝑣2,… , 𝑣𝑙
}

,
denoted as the labeled nodes. These labeled nodes are assigned corresponding labels in the set 𝑌𝐿 =

{

𝑦1, 𝑦2,… , 𝑦𝑙
}

, where 𝑦𝑖
represents the label of node 𝑣𝑖. The remaining nodes in the graph are unlabeled.

3.2. Overview

Our proposed model comprises three main modules: the graph generation module, which generates a set of candidate graphs by
sampling from a pre-defined distribution; the optimal graph construction module, which constructs an optimal graph by selecting
the best candidate graph based on a pre-defined criterion; and the contrastive learning module, which learns node embeddings
using contrastive learning on the constructed optimal graph. (1) The graph generation module’s inputs are divided into two parts.
The first part of the input is node features extracted from the original data and the 𝑘NN graph constructed based on the node
features. The second part of the input is node relationship graphs, which ensures that our model can comprehensively capture the
relationships between the nodes. (2) We used the optimal graph construction module to select the 𝑘NN graph that best reflects the
relationships between nodes. (3) We employ contrastive learning across the node relationship graphs. To improve the performance
of the model, it is necessary to redefine the positive samples of a node and devise a specific optimization strategy.

Our model alleviates the problem of missing or incorrect node relationships in three ways. (1) The model uses the original and
newly generated node labels to complement the missing node relationships. Then, RUNCL can construct new links between nodes
and remove incorrect links. (2) Multiple 𝑘NN graphs are used for node relationship inference, avoiding the noise in the original
graph or a particular 𝑘NN graph that may affect downstream tasks. Moreover, by observing multiple 𝑘NN graphs, the connection
can be reestablished based on the features of the two nodes. (3) With the iterative optimization of the model, the positive and
negative samples generated by the contrastive learning module can generate more accurate positive and negative samples as labels,
4

which finally learn more accurate node embeddings.
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3.3. Graph generation module

In the graph generation module, we aim to refine each node’s representation by incorporating its neighbors’ information. We start
y inputting the original node connections, denoted as 𝐴, and node features, represented as 𝑋, into the GCN (Graph Convolutional
etwork) layer. This step forms the initial representation 𝐻 . The workings of the 𝑘-th layer in this process can be expressed
athematically as follows:

𝐻 (𝑘) = ReLU
(

�̃�− 1
2 �̃��̃�− 1

2 𝐻 (𝑘−1)𝑊 (𝑘)
)

. (1)

Here, �̃� = 𝐴 + 𝐼𝑁 is the adjacency matrix with added self-connections, 𝐼𝑁 is the identity matrix signifying self-connections to
preserve a node’s features, �̃� is the degree matrix of �̃�, 𝑊 (𝑘) is the weight matrix for the 𝑘-th layer, and 𝑅𝑒𝐿𝑈 denotes the activation
function. The matrix 𝐻 (𝑘) refers to the node representations in the 𝑘th layer, where 𝐻 (0) = 𝑋 is the node feature matrix. The final
layer of the GCN utilizes row-wise softmax. We optimize the GCN parameters 𝛩 =

(

𝑊 (1),𝑊 (2),… ,𝑊 (𝑙)) using gradient descent.
This recursive update enriches the node representations by learning from the local neighborhood structures.

In order to produce the set 𝐾, we adjust the GCN parameters 𝛩 to create a series of 𝑘-nearest neighbor graphs, represented
as {𝐾 (0), 𝐾 (1),… , 𝐾 (𝑙)}. These are formed using the node representations 𝐻 = {𝐻 (0),𝐻 (1),… ,𝐻 (𝑙)}, where each 𝐾 (𝑖) signifies the
djacency matrix for the 𝑘-NN graph derived from 𝐻 (𝑖). The original node relationships 𝐴 are also factored in as they provide
ritical baseline observations for the most informative neighborhood graph. As a result, we merge 𝐴 with our 𝑘-NN graphs to
ompile a comprehensive set of neighborhood information graphs, denoted as 𝐾 = {𝐴,𝐾 (0), 𝐾 (1),… , 𝐾 (𝑙)}, to enable a more robust
raph structure for our model.

.4. Optimal graph construction module

To optimize the understanding of node relationships within our model, we have amassed a comprehensive collection of
eighborhood information graphs, denoted as 𝐾. By applying Bayesian inference to these graphs, we calculate the posterior
istribution of graph structures. This process allows us to determine that the observation graph most accurately represents the
nderlying node relationships. Consequently, by examining these refined neighborhood information graphs, our model can achieve
ore precise observational outcomes.

Our model incorporates the Stochastic Block Model (SBM), a prominent framework used in community detection that helps in
raph modeling by considering the probabilities of connections between nodes. To estimate the most informative neighborhood
raph 𝐾, the model presupposes its optimality. Following [29], we use the probability distribution 𝑃 (𝐺|𝛺,𝐻 (𝑙), 𝑌 ) to derive the
est graph 𝐺. The SBM operates on the principle that the likelihood of a link between any two nodes depends on the communities
hey belong to, without influence from other nodes or factors. In this context, 𝛺 represents the model’s parameters, detailing the
ikelihood of edges forming within and across communities. For example, if node 𝑣𝑖 is part of community 𝑐𝑖 and node 𝑣𝑗 is part of
ommunity 𝑐𝑗 , the probability of an edge between them is denoted as 𝛺𝑐𝑖𝑐𝑗 . Thus, 𝛺 quantifies the connection probabilities within
he same community versus between different communities. The probability of creating a particular graph 𝐺 can be calculated with
hese parameters 𝛺, alongside the node predictions 𝐻 and labels 𝑌 :

𝑃
(

𝐺 ∣ 𝛺, 𝐻 (𝑙), 𝑌
)

=
∏

𝑖<𝑗
𝛺

𝐺𝑖𝑗
𝑐𝑖𝑐𝑗

(

1 −𝛺𝑐𝑖𝑐𝑗

)1−𝐺𝑖𝑗
. (2)

In our method, we assume that the community designations 𝑐𝑖 and 𝑐𝑗 for nodes are independently assigned. When considering
he graph 𝐺, the probability of an edge being present between any two nodes, say 𝑣𝑖 and 𝑣𝑗 , depends solely on the probability
𝑐𝑖𝑐𝑗 . This probability is directly linked to the community categories 𝑐𝑖 and 𝑐𝑗 that the nodes belong to, and it is not affected by any

xtraneous factors. The idea behind this approach is that we can use the labels of a node to replace its community identification,
hereby improving the model’s accuracy.

In our semi-supervised node classification framework, we incorporate labeled and unlabeled data to enhance learning. The
odel’s accuracy is quantified by the cross-entropy loss computed over all labeled samples 𝑌𝐿. We aim to reduce this loss to maintain

he classification model’s effectiveness. The cross-entropy loss function is pivotal in this process, adjusting the model’s parameters
owards more accurate predictions:

𝐿𝑦(𝐴,𝑋, 𝑌𝐿) = −
∑

𝑣𝑖∈𝑉
𝑦𝑖 ln 𝑧𝑖. (3)

This loss function is typical in the optimization process of Graph Convolutional Networks (GCN), where the goal is to fine-tune
he parameters 𝛩 using stochastic gradient descent to minimize the error.

Furthermore, to refine the accuracy of our predictions, our model leverages labels to refine the outcomes. This correction process
raws from the initial model input and insights from the contrastive learning module. Further details on this integration and its
mpact on prediction accuracy will be discussed in the following section.
5
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3.5. Contrastive learning module

In our framework, nodes from the k-nearest neighbors graph 𝐾 and the optimized neighborhood information graph 𝐺 are utilized
alongside node 𝑎𝑖 from the set of relationship graphs 𝐴(𝑚)𝑀

𝑚=1. These nodes are input into a multi-layer perceptron (MLP) with an
Exponential Linear Unit (ELU) activation function to project them into a space where we can calculate the contrastive loss:

𝑘𝑖−𝑝 = 𝑊 (2)𝐸𝐿𝑈 (𝑊 (1)𝑘𝑖 + 𝑏(1)) + 𝑏(2), (4)

𝑔𝑖−𝑝 = 𝑊 (2)𝐸𝐿𝑈 (𝑊 (1)𝑔𝑖 + 𝑏(1)) + 𝑏(2), (5)

𝑎(𝑚)𝑖−𝑝 = 𝑊 (2)𝐸𝐿𝑈 (𝑊 (1)𝑎(𝑚)𝑖 + 𝑏(1)) + 𝑏(2). (6)

Here, 𝐸𝐿𝑈 represents an exponential linear unit, a type of non-linear activation function. The parameter sets 𝑊 (2),𝑊 (1), 𝑏(2), 𝑏(1)

are shared across different views for embedding consistency.
Contrastive loss computation requires defining positive and negative samples distinctly. Unlike computer vision where all other

images might be considered negatives, in our graph context, we focus on the node’s local neighborhood to select positive samples.
This method leverages local structural information to improve embedding accuracy, by considering nodes with strong mutual
connections as positives.

To assess the connectivity between nodes 𝑖 and 𝑗, we count the number of direct links using the function 𝑁𝑖(𝑗):

𝑁𝑖(𝑗) =
𝑀
∑

𝑛=1
I(𝑗 ∈ 𝑉 ). (7)

Here, I() is an indicator function that returns 1 if the condition inside is true. We define the top 𝑡 connected nodes to node 𝑖 as
positives, 𝑃𝑖, with all others as negatives, 𝑁𝑖. The loss functions for the positive and negative sample generation are then given by:

𝐿𝑖 = − log

∑

𝑗∈𝑃𝑖 exp

(

sim
(

𝑘𝑖− 𝑝,𝑔𝑗− 𝑝
)

𝜏

)

∑

𝑘∈{𝑃𝑖∪𝑁𝑖} exp

(

sim
(

𝑘𝑖− 𝑝,𝑔𝑖−𝑝
)

𝜏

) , (8)

𝐿𝑎 = − log

∑

𝑗∈𝑃𝑖 exp

(

sim
(

𝑘𝑖− 𝑝,𝑎𝑗− 𝑝
)

𝜏

)

∑

𝑘∈{𝑃𝑖∪𝑁𝑖} exp

(

sim
(

𝑘𝑖− 𝑝,𝑎𝑖−𝑝
)

𝜏

) . (9)

The function 𝑠𝑖𝑚 computes cosine similarity between two vectors, and the temperature parameter 𝜏 helps prevent the model
from getting stuck in local optima during training. The overall loss function of the model is the sum of the losses from the label
prediction and the contrastive learning module:

𝐿 = 𝐿𝑦 + 𝐿𝑖 + 𝐿𝑎. (10)

This approach fine-tunes the model’s parameters to better capture the complex relationships within the graph data, aiming to
enhance the predictive performance.

4. Experimental results and analysis

This section evaluates how effective RUNCL is in semi-supervised node classification tasks. Additionally, we investigate the
underlying mechanism of RUNCL to understand how it works better. The implementation of our approach is based on the original
codebase GEN1 [29] and HeCo.2 [35] All experiments were conducted with the following settings: Operating system: Windows 10
64-bit 21H2. CPU: AMD Ryzen 5 5600X 6-Core Processor. GPU: NVIDIA GeForce RTX 3060. Software versions: Python 3.9; Pytorch
1.10.1; Numpy 1.21.2; SciPy 1.7.3; NetworkX 2.6.3; scikit-learn 1.0.2.

Training the GEN model and our model on the Cora, Citeseer, Chameleon, and Actor datasets required approximately 20-50 min
for 20 epochs. In contrast, both models needed around 120 min to complete 20 epochs for the Pubmed and Squirrel datasets.

4.1. Datasets

Table 1 provides a brief overview of six datasets used in our study. These characteristics are vital for understanding the structural
of each dataset.
6
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i

Fig. 3. Nodes degree distribution. The 𝑥-axis represents the degree, while the 𝑦-axis denotes the number of nodes.

Table 1
Statistics of the datasets.

Dataset Nodes Edges Classes Features Avg Degree Max Degree Density

Cora 2708 5429 7 1433 3.90 168 0.00144
CiteSeer 3327 4732 6 3703 2.74 99 0.00085
PubMed 19 717 44 338 3 500 4.50 171 0.00023
Chameleon 2277 36 101 5 2325 27.58 732 0.01213
Squirrel 5201 217 073 5 2089 76.30 1904 0.01468
Actor 7600 33 544 5 931 7.03 1303 0.00093

Additionally, we have generated degree distribution graphs for all six datasets to analyze the data structure in each dataset, as
llustrated in Fig. 3. The 𝑥-axis represents the degree, while the 𝑦-axis denotes the number of nodes, offering insights into connectivity

distribution across each dataset’s nodes.

∙ Cora, Citeseer and Pubmed [18]: There exist three commonly used citation network datasets: Cora, Citeseer, and Pubmed.
These datasets consist of papers, where each paper is represented as a node in the network, and the citation relationships
between papers are represented as edges in the network. The labels for each paper correspond to academic fields, while the
node features are represented as bag-of-words representations of the papers [29].

∙ Chameleon and Squirrel [13]: The Wikipedia dataset contains two page-page networks: Chameleon and Squirrel. In these
networks, nodes correspond to web pages, and edges represent hyperlinks between the pages. Each node has a set of features
that correspond to informative nouns in the page, and the label of each node represents the monthly traffic of that page.
These datasets are commonly used in graph-based machine learning research as benchmarks for evaluating the performance
of models on real-world graph datasets [29].

∙ Actor co-occurrence network [13]: The Actor collaboration network is a graph that represents the collaboration of actors in
movies. It is a subgraph of the larger director-actor-writer network, which includes the collaboration of directors, actors, and
writers. In this graph, nodes represent actors, and edges represent their collaborations in movies. The node features represent
the keywords associated with each actor, while the labels indicate the type of the actor, such as ‘‘actor’’, ‘‘actress’’, ‘‘producer’’,
etc [29].

4.2. Baselines

To verify the effectiveness of RUNCL, we conducted a comparative analysis with ten baseline models. These models included
spectral-based methods such as SGC and GCN, spatial-based methods like Graph Attention Networks (GAT), Approximate Per-
sonalized Propagation of Neural Predictions (APPNP), and GraphSAGE, and graph structure learning-based methods like Local

1 https://github.com/BUPT-GAMMA/Graph-Structure-Estimation-Neural-Networks
2 https://github.com/liun-online/HeCo
7
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Table 2
Model hyperparameters.

Dataset nhid1 nhid2 dropout lr epoch k

Cora 768 512 0.7 0.01 200 7
Citeseer 768 512 0.7 0.01 200 8
Pubmed 768 512 0.7 0.01 200 6
Chameleon 768 512 0.5 0.005 200 11
Squirrel 768 512 0.5 0.005 200 15
Actor 768 512 0.5 0.005 200 8

Degree Centrality-based Sampling (LDS), Proximity Graph Neural Network (Pro-GNN), and Geometric Matrix Completion with Graph
Convolutional Networks (Geom-GCN). Additionally, we tested two different variants of RUNCL to evaluate the efficacy of the various
modules employed. The baseline models are described below:

∙ SGC [40]: This model is a simplified variant of the Graph Convolutional Network, which aims to streamline the computation
process by eliminating certain nonlinearities and weight matrices.

∙ GCN [18]: A scalable approach for graph-structured data that can handle large amounts of unlabeled data, using a variant of
convolutional neural networks that operate directly on the graph structure.

∙ ChebNet [17]: This model extends convolutional neural networks beyond regular grids, such as images or videos, to
high-dimensional irregular domains, such as graphs or social networks.

∙ GAT [23]: A neural network works on graph-structured data and can assign different weights to nodes based on their
relationships with other nodes in the network, allowing for more nuanced analysis of complex networks.

∙ APPNP [25]: This model improves upon graph convolutional network by using personalized PageRank to better identify
relevant information in graph-structured data.

∙ GraphSAGE [20]: A framework that generates node embeddings using node feature information. This allows it to produce high-
quality embeddings even with limited labeled data, making it useful for tasks such as node classification and recommendation
in social network analysis and other applications.

∙ LDS [12]: This model takes a unique approach to learning the graph structure and parameters of graph convolutional network
simultaneously. By utilizing a bilevel programming approach, which allows LDS to optimize both the graph structure and GCN
parameters at the same time.

∙ Pro-GNN [28]: A framework that uses the intrinsic properties of real-world graphs, such as being low-rank and sparse, to
jointly learn a structural graph and a robust graph neural network model from a perturbed graph.

∙ Geom-GCN [13]: This model introduces a new method for geometric aggregation in graph neural networks, which improves
the preservation of structural information and captures long-range dependencies in disassortative graphs.

∙ GEN [29]: An approach for fitting the mechanism of GNNs is presented by generating graphs with multifaceted observations
injected into the posterior distribution of graphs in order to calculate the posterior distribution of the graphs.

∙ GEM [41]: A semi-supervised learning method from 2023, optimizing prediction accuracy, training efficiency, and inference
speed simultaneously, ideal for resource-constrained environments.

∙ RUNCL𝐶𝑂: A variant of RUNCL where the graph generation module is deleted.
∙ RUNCL𝑆𝑈 : A variant of RUNCL where the contrastive learning module is deleted.
∙ RUNCL: The proposed semi-supervised node classification model.

.3. Parameters setting

To thoroughly assess the RUNCL model, we begin by setting the parameters of the RUNCL model, as well as those of the baseline
odels, to random values and then evaluate the model’s performance by optimizing it through Adam. We select three label rates

or the training set: 20, 10, and 5 labeled nodes for each category. To prevent overfitting, we use 𝑅𝑒𝐿𝑈 as the activation function
and apply dropout with rates varying from 0.5 to 0.7. The proposed RUNCL model is implemented using the PyTorch deep learning
library, while all baseline models are initialized with the same parameters as suggested by their papers. For our model, the hidden
layer dimensions of each GCN are set to 768 and 512 in different experimental configurations. The model hyperparameters are
summarized in Table 2.

4.4. Main results

Table 3 shows the results of node classification from six datasets used in our study, listing the number of nodes with labels
in each class as L/C. We used accuracy to evaluate each model’s performance, with higher values indicating better classification
effectiveness.

In experiments with fewer labels, RUNCL consistently showed superior results in all datasets. Specifically, it achieved notable
improvements in classification accuracy on the Citeseer and Cora datasets. This improvement is due to the model’s ability to learn
the structure of neighborhood information in the node relationship graph effectively, thus enhancing its robustness against noise or
8

sparseness in the original data.
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Table 3
Node classification results (%) (bold = best).

Datasets L/C SGC GCN ChebNet GAT APPNP GraphSAGE LDS Pro-GNN Geom-GCN GEN GEM RUNCL

Cora
20 80.9 81.7 81.9 82.3 83.3 80.1 82.5 80.9 63.7 83.6 83.5 84.2
10 75.5 74.6 72.5 76.9 75.6 72.9 77.1 76.9 47.1 77.8 78.2 78.7
5 72.8 71.0 66.6 75.0 72.9 68.4 75.7 75.1 22.5 76.2 77.8 78.4

Citeseer
20 71.9 70.9 70.0 72.0 72.0 71.8 72.3 68.8 65.6 73.8 74.2 75.3
10 68.6 66.6 67.3 68.4 70.2 68.0 70.4 69.1 48.8 72.4 73.9 74.3
5 61.3 53.5 51.7 61.8 54.2 55.4 68.1 56.6 28.3 70.4 71.5 72.9

Pubmed
20 77.1 79.4 78.2 77.9 79.6 73.6 78.2 78.0 77.2 80.9 80.5 81.0
10 71.9 73.7 71.5 71.1 73.5 70.6 74.4 72.7 69.3 75.6 76.6 76.0
5 68.7 73.0 69.4 70.2 73.8 70.2 72.8 70.6 68.4 74.9 74.5 75.4

Chameleon
20 49.1 49.1 37.0 43.7 46.1 43.7 49.4 50.3 35.7 50.4 51.4 52.3
10 44.4 44.2 32.5 41.7 39.4 41.7 44.9 45.5 31.6 45.6 46.0 46.2
5 39.3 39.5 33.2 35.9 36.9 35.9 40.5 41.0 28.5 41.4 41.8 42.1

Squirrel
20 34.7 35.0 21.2 28.3 33.6 28.3 30.1 33.4 25.4 35.5 36.9 36.2
10 31.8 33.0 18.8 25.9 31.4 25.9 29.4 23.9 21.6 33.4 33.8 34.3
5 29.1 31.3 18.1 24.9 27.0 24.9 27.1 28.2 22.6 32.7 33.1 33.5

Actor
20 22.0 21.7 26.7 28.9 29.7 28.9 27.0 21.5 20.7 35.3 36.1 36.6
10 22.0 20.8 22.3 22.2 28.0 22.2 25.7 22.2 20.7 31.3 32.4 33.4
5 24.2 21.8 21.4 23.1 22.4 23.1 23.8 20.9 24.1 30.5 31.2 32.6

Table 4
Node classification results of the variants (%).

Datasets L/C RUNCL𝐶𝑂 RUNCL𝑆𝑈 RUNCL

Cora
20 82.0 82.9 84.2
10 75.4 78.1 78.4
5 73.2 76.2 78.7

Citeseer
20 71.7 73.4 75.3
10 68.0 72.7 74.3
5 58.3 70.3 72.9

Our model excelled against both GCN and GAT across all datasets, showcasing its capacity to build optimal graphs. The
ombined approach of graph structure estimation and GCN parameter optimization led to a mutual enhancement, improving overall
erformance. The model also outperformed the baseline, GEN, on all datasets, confirming its ability to create less biased graphs and
enerate quality samples for node classification through contrastive learning.

Table 4 illustrates the node classification results of different variations. When solely relying on contrastive learning, as in
UNCL𝐶𝑂, the model falls short as it cannot update node relationships to minimize biases. Compared to this, RUNCL performs
etter, signifying the effectiveness of employing contrastive learning across multiple viewpoints.

Observations indicate that traditional GNN methods witness a significant performance dip with a decreasing label rate, unlike
odels using graph structure learning methods like GEN and RUNCL. For example, in the Citeseer dataset, where the accuracy of

GCN is 70.9% when 20% of the labels are available. However, as the percentage of labeled data decreases to 5%, the accuracy of
GCN drastically drops to 53.5%. While the accuracy of RUNCL only decreases from 75.3 to 72.9. As a result, we observe a more
significant enhancement in the performance of this model at lower label rates, specifically at 10% and 5%. This improvement can
be attributed to the contrastive learning module, which can generate high-quality positive and negative samples, thereby mitigating
the impact of limited labeled data in the dataset.

4.5. Model analysis

To provide further insight into the performance improvement of RUNCL’s each module, we analyze the change of accuracy in
Cora and Citeseer datasets, Table 4 presents the outcomes obtained from the different variations.

Effectiveness of the Graph Generation Module. We analyze the effectiveness of the graph generation module. In every dataset,
RUNCL𝐶𝑂 is composed of two inputs: the node feature graph and the initial node relationships graph. The accuracy comparison
reveals that RUNCL outperforms RUNCL𝐶𝑂. This is mainly due to the fact that real-world graphs in complex systems are commonly
prone to errors, which inevitably have an adverse impact on the overall accuracy of the model. For example, missing links exist
in protein interaction graphs since the experimental error is inevitable. In the Cora dataset, incorrect links between two authors
with no collaborative relationship due to author ambiguation problems. With the graph generation module, the model can generate
a new node relationship graph using the neighborhood information to ensure that the updated node relationship graph is able to
describe the relationships between different nodes more accurately.

Effectiveness of the Contrastive Learning Module. In RUNCL, we leverage both the node feature graph and node relationship
9

graph to jointly supervise and learn embeddings. In this section, we investigate the efficacy of the contrastive learning module. In
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Fig. 4. Effectiveness of the multi-view module.

Fig. 5. Effectiveness of the multi-layer attention module.

each dataset, it can be seen that when the label rate is 20, the RUNCL does not improve significantly compared to the RUNCL𝑆𝑈 .
However, when the label rate drops to 5, RUNCL has the most significant improvement. This is because, for semi-supervised node
classification, more labels imply higher accuracy. Moreover, the model uncovers node relationships that were previously overlooked
in the initial relationship graph. This capability enables the generation of high-quality positive and negative samples that can serve
as valuable labels.

Convergence Speed. Fig. 4 illustrates the accuracy of the LDS, Pro-GNN on the RUNCL model for Cora and Citeseer. The vertical
coordinate in the figure is the model accuracy, and the horizontal coordinate is the epochs. Based on both datasets, RUNCL has a
faster convergence time and better accuracy, which proves the efficiency and effectiveness of RUNCL. Meanwhile, both LDS and
Pro-GNN are subject to a lot of fluctuation in accuracy, but the accuracy of RUNCL has steadily improved. This shows that the model
is robust after considering various information, such as the neighborhood information graph.

Effectiveness of 𝑘-Nearest Neighbor. Fig. 5 demonstrates the influence of the top 𝑘 neighborhoods in the 𝑘-nearest neighbor
graph. The 𝑥-axis represents the number of neighbors, while the 𝑦-axis shows the accuracy. The experiments were conducted
independently on the Cora and Citeseer datasets. As observed in the figure, the accuracy initially increases as the number of
neighbors increases, but then reaches a peak and starts to decrease. We believe this result occurred because a larger 𝑘 may introduce
more noise, and a smaller 𝑘 may cause information loss.

Table 5 illustrates the performance difference between our model and the GEN model in two sub-datasets: low-degree and high-
degree nodes. We utilized the Cora dataset, conducting training and testing on both our model and the GEN model. During model
training, the training and validation sets remained consistent, with the only variation being the categorization of the test set into two
subsets based on node degrees: low-degree nodes (the lowest 200-degree nodes in the test set) and high-degree nodes (the highest
200-degree nodes in the test set). Note that to highlight model improvement, the ‘boost’ column displays a comparison between our
model and the GEN model, calculated as Boost = Our Model’s Result−Baseline Model’s Result

Baseline Model’s Result .
From the table, it is apparent that, overall, the model exhibits superior performance on the test set’s low-degree nodes compared

to the high-degree nodes. For instance, when the label rate is 20, and all test nodes are utilized, our model improve the result
from 83.6% to 84.2%. However, when the test set comprises only low-degree nodes, the model’s test result escalates from 44.7%
to 46.1%.

Low-degree or isolated nodes typically possess limited information in graphs due to their sparse neighborhood connections, which
can lead to information loss during the aggregation. This makes it challenging for models to learn effective feature representations
for these nodes. However, the application of graph contrastive learning significantly mitigates this issue.

Contrastive learning in graphs allows the model to go beyond relying solely on nodes’ direct neighborhood information. By
constructing positive and negative samples, even isolated nodes can learn from other nodes that are either similar (positive samples)
or non-similar (negative samples). This approach introduces additional contextual information for isolated or low-degree nodes,
enriching the feature space available for the model to learn from.
10
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Table 5
Performance difference between our model and the GEN model in two sub-datasets: low-degree and high-degree
nodes (%).

L/C ALL
testset

High-degree
nodes testset

Low-degree
nodes testset

Boost

GEN
20 83.6 32.4 44.7 0
10 77.8 30.8 43.8 0
5 76.2 27.5 41.3 0

RUNCL
20 84.2 33.6 46.1 3.13
10 78.7 31.3 45.9 4.79
5 78.4 28.1 43.8 6.05

Fig. 6. Performance difference between our model and the baseline model.

Additionally, Fig. 6 also reveals that with a reduced label rate, the enhancement in low-degree nodes becomes more pronounced.
or example, considering the low-degree nodes’ results, our model exhibits a 3.13% improvement when the label rate is 20. However,
hen the label rate decreases to 10, our model’s performance escalates to a 4.79% improvement, and at a label rate of 5, it rises

o a 6.05% improvement. This suggests that through contrastive learning, our model can forge a more extensive set of negative
amples. Thus, when fewer labels are available in the training set, our model demonstrates a more significant improvement.

.6. Datasets analysis

In this section, we analyze how the consistency between node features and labels affects model accuracy across various datasets.
odel accuracy tends to be higher in datasets where node features and labels closely align. For example, in the Cora dataset, papers

re represented by node features like bag-of-words and labeled by academic fields such as Case-Based, Genetic Algorithms, and
heory. A paper’s representation is deeply influenced by its node features, suggesting a strong correlation with its labels, leading to
igher model accuracy.

Taking a specific paper, ‘‘P1728’’ in the Cora dataset illustrates this. It has five neighbors; three share the same label, while two
o not, despite having closely related node features. Our model effectively updates node relationships and assigns appropriate labels
ased on these features, demonstrating its efficacy when there is a high feature-label match.

Contrastingly, in the Squirrel dataset, which associates nodes with Wikipedia topics, the correlation between node features
nd labels is less pronounced. For instance, considering page ‘‘P258’’ has neighbors sharing similar topics but having different
isitors counts as labels. Here, updating node relationships solely based on features might be less effective, leading to subpar model
utcomes. Thus, our model performs better in datasets like Cora, where node features and labels are more coordinated, compared
o Squirrel, where such correlation is lacking.

. Conclusion and future work

This paper introduces RUNCL: Relationship Updating Network with Contrastive Learning model, which addresses the node
lassification problem under limited labeled data for low-degree nodes in graph datasets. We leverage two views of the graph
ata, the node feature graph, and the node relationship graph, to capture local and high-order structures. Furthermore, contrastive
earning is utilized to enhance the performance of the model. Our experiments demonstrate that our approach achieves superior
esults compared to most recent models, particularly in scenarios with limited labeled data. The model exhibited an improvement
f 2.5% in the testset. Moreover, the model’s performance boosted to 6% when the testset only included low-degree nodes. Looking
head, we envision the following two areas for future work:
Exploration of the Model’s Functionality on Temporal Graph Data. In future work, we aim to investigate the impact of

emporal variations in graph structures on the performance of our RUNCL model. Given the presence of a time dimension in the
raph data, the architecture of the graphs might evolve over time. Understanding how these dynamic changes influence the model’s
11

ffectiveness and adaptability is crucial.
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Extension to Other Graph-Based Tasks. Another promising direction could be extending the applicability of the RUNCL model
o other graph-based tasks such as link prediction, graph clustering, and graph completion. Investigating how the model can be
dapted and fine-tuned for various tasks will broaden its usability and practical relevance.
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