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Abstract. Knowledge graphs change over time, for example, when
new entities are introduced or entity descriptions change. This im-
pacts the performance of entity linking, a key task in many uses of
knowledge graphs such as web search and recommendation. Specifi-
cally, entity linking models exhibit temporal degradation - their per-
formance decreases the further a knowledge graph moves from its
original state on which an entity linking model was trained. To tackle
this challenge, we introduce TIGER: a Temporally Improved Graph
Entity Linker. By incorporating structural information between en-
tities into the model, we enhance the learned representation, mak-
ing entities more distinguishable over time. The core idea is to in-
tegrate graph-based information into text-based information, from
which both distinct and shared embeddings are based on an entity’s
feature and structural relationships and their interaction. Experiments
on three datasets show that our model can effectively prevent tem-
poral degradation, demonstrating a 16.24% performance boost over
the state-of-the-art in a temporal setting when the time gap is one
year and an improvement to 20.93% as the gap expands to three
years. The code and data are made available at https://github.com/
pengyu-zhang/TIGER-Temporally-Improved-Graph-Entity-Linker.

1 Introduction

A Knowledge Graph (KG) is a structured representation of facts, con-
sisting of entities, relationships between them and their attributes [6].
KGs such as DBpedia [3], YAGO [16], and Wikidata [21], not only
capture the relationships between entities but also contain rich tex-
tual attributes. These and other KGs play an important role in web
applications such as recommendation systems [33] and question an-
swering [11]. However, performance on the above applications is fre-
quently limited by the ambiguity of entities mentioned in the text. For
example, ‘apple’ could refer to a fruit or a multinational technology
company.

Hence, the task of Entity Linking (EL) has emerged as a vital step
in both producing and using KGs. EL aims to connect mentions of
entities in text to their corresponding entities in a KG. Even though
there are many works in EL, only a few consider the time aspect.
In real-world scenarios, KGs evolve over time [18], existing entities
(continual entities) may change their meanings over time due to soci-
etal development, and previously non-existent entities (new entities)
may appear. For example, entity descriptions from Wikipedia con-
stantly evolve (e.g., the most frequent meaning of the term ‘corona’
changed around 2020). New entities emerge (e.g., ‘COVID-19’ was
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(a) Entity linking with just textual information.
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(b) Entity linking with both textual and structural data, where
edge colors denote different entity relationships.

Figure 1. In this example, the mention ‘Wildcats’ could refer to Arizona
Wildcats football team, or Wildcats (film) entities. We can learn better entity

representations by including information from the graph structure.

added to Wikidata in 2020). Neglecting the evolution of entities can
lead to less accurate EL.

To tackle this challenge, [30] proposed a unique dataset, Tem-
pEL, to explore the temporal evolution aspect of the EL task. The
dataset consists of 10 yearly snapshots, evenly distributed, from En-
glish Wikidata entities, spanning from January 1, 2013, to January
1, 2022. However, despite the model presented with the TempEL
dataset achieving impressive results across snapshots, it still suffers
from temporal degradation. When trained on data from time t1 and
tested on data from time t2, performance declines as the gap between
the two timestamps widens. Such degradation may constrain the ef-
fectiveness of EL models in dynamically changing real-world con-
texts.

In response to the challenge of temporal degradation, we hypothe-
size that the relationships between entities can serve as vital informa-
tion in the EL task, as shown in Figure 1. The simultaneous attention
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to both textual and structural information could substantially enhance
the accuracy and robustness of EL in the face of evolving temporal
contexts. Because entities are similar to nodes in the network, their
meanings are influenced by their intrinsic properties and the nature
of their connections to other nodes. Consider an entity ambiguously
labeled ‘apple’ in two distinct periods. In the earlier period, surround-
ing nodes and edges might be related to ‘orchards’ and ‘fruit’. At a
later time, connections might be made to ‘technology’ and ‘innova-
tion’. Through the graph’s structural context, we can verify that the
former is likely referencing the fruit, while the latter implies the tech
company. Hence, we contend that we can learn better entity represen-
tations by including information from the graph structure, resolving
unwanted ambiguities.

To incorporate structural information about entities, we proposed
TIGER, a Temporally Improved Graph Entity Linker. By including
the structural information in our model, entities are better described.
As a result, each entity’s representation becomes more distinct and
easier to differentiate from other entities. Our contributions are sum-
marized as follows:

• The Graph-TempEL dataset that includes relationships from the
Wikidata5M [23] dataset to study the time-evolving aspect of en-
tity linking tasks.

• A novel entity linking model that adaptively combines both text
and graph information.

• Extensive experiments on three entity linking datasets show no-
table improvement of our model over related approaches.

2 Related Work

Entity Linking. Entity Linking (EL) sometimes called Wikifica-
tion, is the connecting of mentions of entities in the text to a knowl-
edge base and is a widely studied topic in NLP. We refer the reader
to [12] for a detailed survey of the topic. Here, we focus on key chal-
lenges faced by current EL models. One of these challenges is linking
textual mentions to unseen entities, known as zero-shot learning [7].
For instance, [26] introduces a conceptually two-stage, highly effec-
tive BERT-based zero-shot EL model called BLINK. [4] proposed a
neuro-symbolic, multi-task learning approach to mitigate the prob-
lem of diminishing returns. They improved BLINK’s performance
with much less data by exploiting auxiliary information about en-
tity types. To address the issue of an entity not being present in the
knowledge base, NASTyLinker [5] clusters mentions and entities us-
ing dense representations from Transformers and, if multiple entities
are assigned to a single cluster, it resolves conflicts by calculating
transitive mention-entity affinities. Building on the idea of under-
standing intricate relationships between entities, [19] introduced a
novel concept of representing entities in multi-dimensional spaces,
which could further refine the EL process. Furthermore, [17] pro-
poses a hierarchical multi-task model to extract ultra-fine type infor-
mation that can help to learn contextual commonality and improve
their generalization ability to tackle the overfitting problem. An ad-
ditional challenge related to unseen entities is the problem addressed
in this paper, temporal EL, where both unseen and changing entities
must be linked [30].

Several existing studies have sought to combine graph vectors with
textual content to address the zero-shot problem. Among them, KG-
ZESHEL [10] stands out for its innovative approach. Their approach
lies in integrating graph vectors, which provide a route to combine
textual and graph knowledge from knowledge graphs. This informa-
tion fusion could enhance the model’s ability to resolve ambigui-
ties and improve EL accuracy. However, the study primarily focuses

on the zero-shot scenario in EL, overlooking the challenges of tem-
poral degradation. Furthermore, KG-ZESHEL does not fully exploit
unique and shared features across different graphs or relationships.

GNN-based Knowledge Graph Models. Graph Neural Networks
(GNNs) integrate the topological and attribute information inherent
in graph data through deep neural networks, thereby generating more
refined node feature representations [28]. Recently, several studies
have focused on using node features derived from graph represen-
tation learning in the context of knowledge graphs. For instance,
the Contextualized Graph Attention Network (CGAT) [8] effectively
leverages both local and non-local graph context information of KG
entities. Essential entities for a target entity are extracted from the
entire KG via a biased random walk, thereby incorporating non-local
context within the KG. DSKReG [25] proposed learning the rele-
vance distribution of associated items from knowledge graphs and
sampling relevant items by this distribution to prevent the exponen-
tial growth of a node’s receptive field. The work in [32] creates a
dense, high-coverage semantic subgraph by linking question entity
nodes to candidate entity nodes via text sentences from Wikipedia.

Temporal Degradation. Temporal change on the web has been
well documented both for structured [1] and unstructured informa-
tion [2]. However, temporal dependency in models is often over-
looked. The common assumption is that once a model reaches the
desired level of quality, it can be deployed without requiring further
updates or retraining [20]. This assumption, however, may not hold
true for tasks involving KGs, where entities evolve over time. The
impact of temporal variation of KGs on model performance has been
shown in several use cases ranging from online shopping [29] and
internet of things [27]. The TempEL paper highlights the same need
to address temporal degradation for EL, which we do here.

3 Task Formulation and Definition

Entity Linking (EL). The EL task takes a given text document D
as input, which comprised of a list of tokens [w1, . . . , wr], where
r indicates the document’s length. Within this document, there ex-
ists a list of entity mentions MD containing n distinct elements
[m1, . . . ,mn], where each mention mi corresponds to a span of con-
tinuous tokens in D, represented as mi = D [x, y]. The model sub-
sequently yields a list of mention-entity pairs {(mi, ei)}i∈[1,n]. Ev-
ery entity ei correlates with an entry within a comprehensive knowl-
edge base (KB), such as Wikipedia. It is assumed that both the title
and description of these entities are available, a standard premise in
EL [9].

Graph. A graph is defined as G = (V,E), where V is the set of
N nodes (i.e., entities) {v1, v2, · · · , vN}. E is the set of M edges
(i.e., relations) represented as {e1, e2, · · · , eM}, where each ei is
a pair of nodes from V , such as ei = (va, vb). A graph is termed
homogeneous when all its nodes and edges belong to the same type,
where the number of node types is 1, and the number of edge types
is also 1 [24].

4 Dataset Construction

We combined the TempEL1 dataset, a benchmark for temporal EL,
with Wikidata5M2 to explore the benefits of structured knowledge
graphs. Our resultant dataset has five segments: two text-based
(entity description and mention context) and three graph-based

1 https://cloud.ilabt.imec.be/index.php/s/RinXy8NgqdW58RW
2 https://deepgraphlearning.github.io/project/wikidata5m
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(structure graph, feature graph, and feature matrix). The con-
struction process is shown in Figure 2. We make the dataset available
in the supplementary material [31]. We now walk through each step.
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Figure 2. The dataset construction process. We use Wikidata5M to extend
TempEL with strutured graph representations. The green section represents

the input to our model.

First, we categorized each year of data from the TempEL dataset
into entity descriptions and mention context parts based on the year.
The entity description comprises the title, text, document ID, and,
importantly, the unique ID of the entity (its QID). The mention con-
text consists of context left, context right, mention, label, QID, and
category.

Second, we create a structure graph based on the relationship in
the Wikidata5M dataset and the entity IDs in the TempEL dataset.
There are numerous relationships among entities in the Wikidata5M
dataset. To filter down the number of relationships, we matched these
relationships’ entity IDs (also QIDs) with the QID in the entity de-
scriptions from the TempEL dataset. We will keep the relationship
if both QIDs are in a relationship in the Wikidata5M data and are
present in the existing entity description. The structure graph is an
n × n adjacency matrix, where n represents the total number of en-
tities in the dataset. Each row indicates whether an entity has a con-
nection with another entity. The adjacency matrix is made up of 0s
and 1s. If entity i and entity j are connected, the value in the ith row
and jth column of the matrix is 1; otherwise, it is 0.

Third, we built the feature graph using the embeddings from entity
descriptions. We employed the pre-trained bert-base-uncased model
to embed the entity description’s textual information associated with
the ‘text’ key. By accessing the embedded information for each en-
tity in the dataset, we established a kNN graph based on these enti-
ties, which we refer to as the feature graph. This graph highlights the
connections between entities based on their entity descriptions. The
feature graph is also an n× n adjacency matrix, where n represents
the total number of entities in the dataset. Each row indicates whether
an entity has a connection with other entities. If entity i and entity j
are connected, the value in the ith row and jth column of the matrix
is 1; otherwise, it is 0.

Fourth, we constructed a feature matrix representing each entity
based on the tokens from entity descriptions in the dataset. After get-
ting the token IDs for each entity using the pre-trained bert-base-
uncased model, we filtered all token IDs based on their frequency of
occurrence. We retained those token IDs that appeared between 46
and 200 times. We discarded highly frequent token IDs since these
tokens, such as ‘is,’ ‘an,’ ‘the,’ and other common words, do not of-
fer meaningful differentiation among entities. Also, the less frequent
token IDs were removed due to the possibility of them being mean-
ingless noise or random codes, and including an excess of these rare
tokens would make the matrix too sparse, slowing down computa-

tion. The final feature matrix is an n × m dimensional matrix com-
posed of 0s and 1s. Here, n represents the total number of entities
in the dataset, while m is the number of retained token IDs. If the
data in the ith row and jth column of the matrix is 1, it indicates that
entity i contains the jth token.

Finally, we generate distinct mention context subsets from all
available mention context samples. Using the ‘category’ in each sam-
ple as the standard, we further divided the training set into two sub-
training sets: ‘Continual entities (existing entities in previous years)’
and ‘New entities (newly appeared, previously non-existent entities).’

5 Approach

Figure 3 illustrates our model’s framework. The core concept is com-
bining text-based information (entity description, mention, and its
context at t1) with graph-based data (structure graph, feature graph,
and feature matrix at t1) during training. This integration not only
enhances accuracy at t1 but also at subsequent times like t2. For in-
ference, the model solely relies on text-based information, including
entity description, mention, and context.

We now walk through the framework. First, the bi-encoder mod-
ule employs two separate BERT transformers to transform mention
context and entity description into dense vectors ym and ye. Entity
candidates are scored via the dot product of these vectors. We in-
troduce Le to maximize the correct entity’s score against randomly
sampled entities.

Second, we input the pre-constructed structure graph, feature
graph, and feature matrix into the Distinct and Shared Convolu-
tion Modules. Understanding the shared and unique features in both
graphs, we use a shared-parameter strategy to derive common em-
beddings labeled as Zsr and Zsf . A consistency loss Ls is intro-
duced to emphasize shared features. Meanwhile, distinction losses
Ldr and Ldf are used to retain the distinctiveness of Zr from Zsr

and Zf from Zsf , respectively. Lastly, all loss functions are unified
for joint optimization.

5.1 Bi-encoder Module

Mention Representation. Following [26], the mention representa-
tion τm is constructed from word-pieces of the surrounding context
and the mention:

[CLS] ctxtl [Ms] mention [Me] ctxtr[SEP] (1)

where ctxtl, ctxtr denote word-pieces tokens before and after the
mention, and [Ms], [Me] tag the mention. The input’s maximum
length is set to 128, consistent with the BLINK model.

Entity Representation. The representation τe consists of word-
pieces of the entity title and its description:

[CLS] title [ENT] description [SEP] (2)

where [ENT] separates the title and description.
Encoding. Using the bi-encoder architecture from [26], we encode

descriptions into vectors ye and ym:

ym = red (T1 (τm)) (3)

ye = red (T2 (τe)) (4)

Here, T1 and T2 are transformers, and red(.) reduces the sequence of
vectors into a single vector.

Scoring. Entity candidate scores are computed via dot-product:

s (m, ei) = ym · yei
(5)
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Figure 3. The proposed TIGER model adaptively integrates text data (mention context and entity descriptions) with graph data (structural graphs, feature
matrices, and feature graphs) to enhance temporal accuracy. The model employs a Shared Convolution Module to learn common features and two Distinct

Convolution Modules to capture unique features. Additionally, loss functions are used to emphasize these distinctions.

5.2 Relation Convolution Module

We input the structure graph (from entity relationships), feature
graph (from entity features), and feature matrix (based on token fre-
quencies in entity descriptions) into the Distinct and Shared Convo-
lution Modules.

Distinct Convolution Module. We believe that our model can ex-
tract valuable insights from different entity relationships. By feeding
the adjacency matrices Af and Ar based on entity structure and fea-
ture graphs into Distinct Convolution Modules, we obtain two spe-
cific embeddings Zf and Zr .

Utilizing the pre-constructed feature matrix X and adjacency ma-
trix Af that based on feature graph, the output of the l-th layer, Z(l)

f ,
can be represented as:

Z
(l)
f = ReLU

(
D̃

− 1
2

f ÃfD̃
− 1

2
f Z

(l−1)
f W

(l)
f

)
(6)

with W
(l)
f as the weight matrix for the l-th GCN layer, initial Z(0)

f =

X. Ãf = Af + If and D̃f is the diagonal degree matrix of Ãf .
The final layer output is denoted as Zf . In this way, we can learn
the entities embedding which captures the specific information Zf

in feature space.
Similarly, using the adjacency matrix Ar that based on structure

graph and feature matrix X, the output embedding Zr can be calcu-
lated in the same way as in feature graph.

Shared Convolution Module. The feature graph and structure
graph are not entirely independent. In the Entity Linking (EL) task,
entity feature may be correlated with the feature graph or in struc-

ture graph or both of them, which is difficult to know beforehand.
Therefore, we not only need to extract the embedding in these two
graph, but also to extract the shared information. To address this, we
use Shared Convolution Module with parameter sharing strategy.

Using GCN on the feature adjacency matrix Af , the embedding
Z

(l)
sf is:

Z
(l)
sf = ReLU

(
D̃

− 1
2

f ÃfD̃
− 1

2
f Z

(l−1)
sf W(l)

s

)
(7)

with W
(l)
s as the l-th GCN layer weight matrix and initial Z(0)

sf = X.
Similarly, using the adjacency matrix Ar that based on structure

graph and feature matrix X, the output embedding Zsr can be calcu-
lated in the same way as in feature graph.

5.3 Objective Function

In order to achieve high EL accuracy, we use the EL loss function Le,
distinct convolution loss function Ldr and Ldf , shared convolution
loss function Ls.

EL Loss Function Le. The objective is to train the network such
that it maximizes the score of the correct entity compared to the
other entities from the same batch. Specifically, for each training pair
(mi, ei) within a batch of N pairs, the loss is given by:

Le (mi, ei) = −s (mi, ei) + log
N∑

j=1

exp (s (mi, ej)) (8)

Shared Convolution Loss Function Ls. Given the output embed-
dings Zsr and Zsf from the GCN with shared weight matrices, the

P. Zhang et al. / TIGER: Temporally Improved Graph Entity Linker3736



aim is to capture the similarity across n entities. The shared convo-
lution loss ensures that the similarity matrices for both embeddings
are consistent, resulting in the following constraint:

Ls =
∥∥∥(Zsr · ZT

sr

)
−

(
Zsf · ZT

sf

)∥∥∥2

F
(9)

Distinct Convolution Loss Functions Ldr and Ldf . To ensure
the embeddings Zr and Zsr , derived from the same adjacency ma-
trix Ar , capture distinct information, we employ the Hilbert-Schmidt
Independence Criterion (HSIC) [14]. The HSIC measure is defined
as:

HSIC (Zr,Zsr) = (n− 1)−2tr (RKsRKsr) , (10)

where Ks and Ksr are the Gram matrices, with entries kr,ij =
kr

(
zir, z

j
r

)
and ksr,ij = ksr

(
zisr, z

j
sr

)
. Matrix R = I − 1

n
eeT ,

where I is the identity matrix and e is an all-ones column vector. An
inner product kernel function computes KrKsr .

The same HSIC measure enhances the disparity between embed-
dings Zf and Zsf from same adjacency matrix Af :

HSIC (Zf ,Zsf ) = (n− 1)−2tr (RKsRKsf ) , (11)

Thus, the distinct convolution loss Ld is:

Ld = Ldr + Ldf = HSIC (Zr,Zsr) +HSIC (Zf ,Zsf ) . (12)

Overall Objective Function. The overall objective function, com-
bining EL and convolution losses, is given by:

L = Le + aLs + bLd (13)

where a and b are weights for the shared and distinct convolution
losses, respectively.

6 Evaluation

This section evaluates the proposed model and presents its perfor-
mance on three datasets. The implementation of our approach is
based on the original codebase BLINK3 [26] and AM-GCN4 [22].
We compare our approach to the BLINK and SpEL5 [13] model. We
selected BLINK and SpEL as baselines because of their relevance
and performance benchmarks in the field. BLINK has excellent scal-
ability and serves as part of our model’s codebase. SpEL, the latest
state-of-the-art as of 2023, provides a current standard for evaluat-
ing our model’s improvements. Experimental details can be found in
[31]

6.1 Datasets

Our proposed model is evaluated on three datasets which are sum-
marized in Table 1.

Graph-TempEL: Continual entities and Graph-TempEL: New

entities6 are from the Graph-TempEL dataset that we constructed.
Given that Wikidata5M dataset is from July 2019, to avoid temporal
leakage, our dataset spans 4 years from 2019 to 2022.

Each year’s data further divided into a training set (1,764), a val-
idation set (≈ 42k, same as original TempEL dataset), and a test
set (≈ 48k, same as original TempEL dataset). Here, the training set
contains only 1,764 samples because, in the original TempEL dataset,

3 https://github.com/facebookresearch/BLINK
4 https://github.com/zhumeiqiBUPT/AM-GCN
5 https://github.com/shavarani/SpEL
6 https://doi.org/10.5281/zenodo.12794960

Table 1. Summary Statistics of Datasets.

Train Validation Test Entities

Graph-TempEL:

Continual Entities
1,764 42,096 48,215 136,227

Graph-TempEL:

New Entities
1,764 42,096 48,215 136,227

ZESHEL 49,275 10,000 10,000 492,321
WikiLinksNED 2,188,782 10,000 10,000 5,455,160

each year’s dataset contains only 1,764 ‘new entities’ samples. The
number of entities in our dataset is the same across all temporal snap-
shots. The data are made available at supplementary material [31].

We also performed experiments for the full ten year period pro-
vided by TempEL while still using Wikidata5M as the reference KG.
These results can be found in supplementary material [31].

Zero-shot Entity Linking (ZESHEL)7 dataset covers various
subjects, such as a fictional universe from a book or film series, men-
tions, and entities with detailed document descriptions. The train,
validation, and test sets have 49k, 10k, and 10k samples, respectively.
The entities in the validation and test sets are from domains differ-
ent from those in the train set. Specifically, the training set includes
domains ‘american football,’ ‘doctor who,’ ‘fallout,’ ‘final fantasy,’
‘military,’ ‘pro wrestling,’ ‘star wars,’ ‘world of warcraft.’ The val-
idation set includes ‘coronation street,’ ‘muppets,’ ‘ice hockey,’ and
‘elder scrolls.’ The test set includes ‘forgotten realms,’ ‘lego,’ ‘star
trek,’ and ‘Yugioh.’ This simulates the newly added entities to the
knowledge graph. The number of entity candidates ranges between
10k and 100k, totaling 500k entities over all 16 domains.

WikiLinksNED 8 dataset was created to address the challenges in
the field of named entity disambiguation. Spanning a wide array of
topics, from historical events to contemporary figures, the mentions
and entities in this dataset are equipped with detailed document de-
scriptions. The dataset is partitioned into train, dev, and test sets with
2.1 million, 10k, and 10k samples, respectively.

6.2 Training Details

We reuse the same hyperparameter settings from [26] and the same
bert_uncased_L-8_H-512_A-8 pre-trained model to train the bi-
encoder. The recall@N is used as the evaluation metric, where N
equals 1, 2, 4, 8, 16, 32, and 64, respectively. If the correct answer
appears within the top N predictions of the model, it is considered a
correct prediction. The bi-encoder is trained on the ZESHEL dataset
across five epochs, utilizing 128 mentions and 128 entity tokens at
a learning rate 1e-05. Conversely, the bi-encoder undergoes training
for one epoch on our dataset, maintaining similar mention and entity
token quantities and learning rates. The training process employs an
annual training approach and tests on all test sets. More details are
provided in the supplementary material [31].

6.3 Main Results

Table 2 illuminates the effectiveness of our model in mitigating
temporal degradation using results derived from the Graph-TempEL
dataset. Here, we use continual entities and new entities as the train-
ing set. Each column in the table represents the years’ gap be-
tween the training and testing datasets, as denoted by the digits from
0 to 3. For instance, 0 implies that training and testing datasets

7 https://github.com/facebookresearch/BLINK/tree/main/examples/zeshel
8 https://github.com/yasumasaonoe/ET4EL
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Table 2. Temporal Degradation Mitigation Performance Across Time
Gaps Using Continual Entity Samples and New Entity Samples.

0 1 2 3 0 1 2 3

Continual Entities New Entities

@1

BLINK 0.177 0.181 0.182 0.177 0.132 0.132 0.132 0.142
SpEL 0.229 0.234 0.228 0.221 0.172 0.169 0.167 0.192

TIGER 0.290 0.292 0.297 0.304 0.186 0.195 0.188 0.217

Boost (%) 26.76 24.83 30.22 37.53 8.60 15.15 12.47 12.73

@2

BLINK 0.260 0.265 0.268 0.263 0.197 0.197 0.198 0.211
SpEL 0.320 0.328 0.327 0.322 0.239 0.247 0.258 0.261

TIGER 0.404 0.409 0.414 0.425 0.274 0.285 0.277 0.314

Boost (%) 26.31 24.54 26.54 31.79 14.52 15.38 7.38 20.32

@4

BLINK 0.357 0.364 0.367 0.362 0.277 0.277 0.278 0.294
SpEL 0.429 0.436 0.430 0.429 0.329 0.340 0.333 0.354

TIGER 0.520 0.524 0.530 0.543 0.374 0.389 0.381 0.421

Boost (%) 21.13 20.38 23.23 26.36 13.65 14.38 14.36 18.79

@8

BLINK 0.463 0.469 0.475 0.470 0.370 0.370 0.374 0.392
SpEL 0.546 0.544 0.554 0.548 0.423 0.440 0.439 0.472

TIGER 0.628 0.632 0.637 0.652 0.483 0.498 0.490 0.533

Boost (%) 15.11 16.14 14.97 18.90 14.34 13.17 11.76 13.04

@16

BLINK 0.571 0.576 0.581 0.578 0.472 0.471 0.474 0.491
SpEL 0.645 0.645 0.656 0.652 0.539 0.541 0.554 0.551

TIGER 0.724 0.728 0.733 0.744 0.592 0.604 0.599 0.638

Boost (%) 12.36 12.95 11.76 14.24 9.74 11.73 8.22 15.76

@32

BLINK 0.675 0.680 0.685 0.683 0.576 0.576 0.577 0.593
SpEL 0.732 0.739 0.744 0.741 0.641 0.646 0.637 0.673

TIGER 0.807 0.809 0.812 0.821 0.694 0.704 0.702 0.732

Boost (%) 10.24 9.38 9.14 10.80 8.27 9.06 10.13 8.77

@64

BLINK 0.769 0.774 0.778 0.776 0.677 0.676 0.679 0.694
SpEL 0.820 0.827 0.825 0.824 0.732 0.733 0.739 0.754

TIGER 0.871 0.872 0.874 0.881 0.783 0.791 0.790 0.813

Boost (%) 6.25 5.43 5.91 6.86 7.08 7.85 6.82 7.84

Ave. Boost (%) 16.88 16.24 17.40 20.93 10.89 12.39 10.16 13.89

come from the same year, while 3 indicates that the model was
trained in 2019 and tested in 2022. The rows are divided based
on various metrics: @1 to @64. ‘Boost’ displays a comparison be-
tween our model TIGER and SpEL model, calculated as Boost =
Our Model’s Result−Baseline Model’s Result

Baseline Model’s Result .
Figure 4 displays recall@N results from the Graph-TempEL

dataset. We assessed our proposed model against the baselines using
recall metrics. The x-axis indicates the year gap between training and
testing sets, while the y-axis represents the recall rate. Two testing
scenarios are considered: ‘Forward and Backward’ (training on past
data and testing on future data, and vice versa) and ‘Only Forward’
(training on past data and testing on future data). For example, ‘For-
ward and Backward’ averaged results from 2019 to 2022 and 2022
to 2019. The ‘Only Forward’ scenario solely accounts for 2019 to
2022. A gap of 0 indicates identical training and testing years, mak-
ing ‘Forward and Backward’ and ‘Only Forward’ values the same.
Overall, our model consistently outperforms the baselines.

It can be observed that compared to BLINK and SpEL, regard-
less of whether the training set consists of new or continual entities,
our model always performs better in the ‘Only Forward’ setting than
in the ‘Forward and Backward’ setting. This demonstrates that the
model can better distinguish similar entities when graph structure is
incorporated, highlighting the effectiveness of adding graph struc-
tural information. This improvement is particularly noticeable when
using new entities as the training set (blue solid line), especially for
larger year gap.

It is also worth noting that the improvement effect of our model
diminishes gradually as the metric threshold shifts from @1 to @64,

Figure 4. Recall performance (recall@1) of different models on testset.
The solid and dashed lines represent models training on new and continual

entities.

Figure 5. Percentage improvement of the TIGER model compared to the
SpEL model across evaluation metrics from recall@1 to recall@64.

as shown in Figure 5. The figure shows the ‘Only Forward’ result.
The x-axis denotes the year gap between training and testing datasets,
and the y-axis represents the improvement margin of our model com-
pared to the SpEL model. The solid line represents the model trained
on ‘Graph-TempEL: New Entities’, while the dashed line indicates
the model trained on ‘Graph-TempEL: Continual Entities’. This fig-
ure displays results only for the only forward setting. See the supple-
mentary material [31] for complete results of both forward and for-
ward and backward settings. A plausible explanation for this obser-
vation is that when using the @64 threshold, the model only needs to
correctly predict one out of the top 64 answers, allowing for a higher
tolerance of errors. Consequently, the relative performance improve-
ment of our model becomes less evident.

Additionally, it can be observed that the improvement of the
TIGER model using continual entities as the training set (e.g., the
blue dashed line in the figure) outperforms the improvement using
new entities as the training set (e.g., the blue solid line). We believe
this phenomenon is because continual entities, having been present
in the dataset for a longer period, offer the model a richer and more
consistent historical context to learn. In contrast, new entities intro-
duce a level of uncertainty and novelty to the model, requiring it to
rapidly adapt to previously unseen entities without the historical con-
text. This may restrain the model’s ability to predict accurately.

Figure 6 illustrates the improvement in recall for the TIGER model
over the BLINK model in the testset across nodes of varying degrees.
The x-axis represents the degree of nodes. For instance, 0 denotes
isolated nodes; 1 represents nodes with only one neighbor. The y-
axis indicates improvement in recall between TIGER and BLINK.
Compared to the BLINK model, nodes with more neighbors provide
additional information, allowing TIGER to learn more accurate node
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Figure 6. TIGER performance improvement over the BLINK model as the
degree of target entities in the relation graph increases (x-axis). The orange

regression line shows a trend where TIGER achieves better performance
enhancements, particularly on high-degree entities.

Table 3. The models’ performance on non-tempral non-structure dataset.

@1 @4 @8 @16 @32 @64

Zeshel:

Forgotten Realms

BLINK 0.5183 0.7400 0.7950 0.8375 0.8683 0.8942
SpEL 0.5717 0.8092 0.8646 0.8969 0.9373 0.9498

TIGER 0.5117 0.7433 0.7983 0.8292 0.8650 0.8975

Zeshel:

Lego

BLINK 0.4170 0.6647 0.7548 0.8090 0.8599 0.8841
SpEL 0.4672 0.7216 0.8113 0.8685 0.9197 0.9420

TIGER 0.4103 0.6747 0.7506 0.8098 0.8607 0.8899

Zeshel:

Star Trek

BLINK 0.3717 0.5798 0.6475 0.7052 0.7563 0.7999
SpEL 0.4316 0.6358 0.7030 0.7574 0.8122 0.8534

TIGER 0.3700 0.5824 0.6485 0.7036 0.7556 0.7984

Zeshel:

Yugioh

BLINK 0.2828 0.4769 0.5504 0.6094 0.6577 0.6935
SpEL 0.3361 0.5270 0.6056 0.6615 0.7110 0.7529

TIGER 0.2783 0.4798 0.5495 0.6097 0.6544 0.6935

WikilinksNED

BLINK 0.1721 0.4192 0.5467 0.6505 0.7340 0.7907
SpEL 0.2315 0.4761 0.5976 0.7084 0.7913 0.8414

TIGER 0.1796 0.4227 0.5614 0.6531 0.7240 0.7973

Average

BLINK 0.3524 0.5761 0.6589 0.7223 0.7752 0.8125
SpEL 0.4076 0.6339 0.7164 0.7785 0.8343 0.8679

TIGER 0.3500 0.5806 0.6617 0.7211 0.7719 0.8153

embeddings and make more precise predictions.
Table 3 compares EL results of our model with the BLINK

(biencoder and crossencoder) and SpEL (ROBERTA large) model
on ZESHEL and WikilinksNED datasets. Since TIGER builds on
the BLINK model by incorporating temporal and graph data opti-
mizations, demonstrating superior performance when temporal and
graph data are available (Table 2). Without temporal and graph data,
TIGER performs similarly to the BLINK model, and SpEL remains
the state-of-the-art model (Table 3).

6.4 Qualitative Comparison

Our model excels at accurately predicting ambiguous samples where
the context is unclear or multiple interpretations exist. For example,
when analyzing political events with multiple actors, our model ac-
curately determines the correct association. In the passage

“. . . Sarah Huckabee Sanders and attorney general Leslie Rut-
ledge announced campaigns . . . California governor Gavin
Newsom was elected in 2018 with 61.9% of the vote and is run-
ning for reelection for a second term. On September 14 2021 a
recall election was held.”

Our model correctly associates the mention “recall election” with
the 2021 CALIFORNIA GUBERNATORIAL RECALL ELECTION en-

tity, whereas the BLINK instead links to the 2021 OHIO 15TH CON-
GRESSIONAL DISTRICT SPECIAL ELECTION.

Additionally, we observed that our model exhibits a higher predic-
tion accuracy for samples related to temporal aspects.

For example, in the passage:

“Dundalk entered the 2021 season as the FAI Cup holders, and
were still the League of Ireland Cup holders from 2019 . . . ”

our model correctly identified the mention “FAI Cup” as referring to
the 2021 FAI CUP entity whereas the BLINK linked to the 2009–10
IN SCOTTISH FOOTBALL entity.

7 Conclusion and Future Work

This paper introduces TIGER, a Temporally Improved Graph Entity
Linker, to address temporal degradation. By adaptively combining
the distinct and shared features between different entity relation-
ships, the model is able to ensure that the semantic differences be-
tween different entities remain intact and do not diminish over time.
We expanded the TempEL dataset by incorporating yearly entity re-
lationships from the Wikidata5M dataset, creating Graph-TempEL,
which enhances its suitability for studying temporal degradation.
The dataset provides four yearly snapshots from 2019 to 2022. Each
snapshot features entity descriptions, mention contexts, structure and
feature graphs, and an entity feature matrix. Experiments on Graph-
TempEL dataset show that our model can effectively prevent tempo-
ral degradation, demonstrating a 16.24% performance boost over the
state-of-the-art in a temporal setting when the time gap is one year
and an improvement to 20.93% as the gap expands to three years.
Going forward, we see a few areas of future work:

Contrastive Learning. Contrastive learning has been extensively
applied to graph neural networks in recent research, yet its applica-
tion to temporal datasets remains limited. When a dataset contains
snapshots from different years, some entities will likely appear in
multiple snapshots. If certain relationships between entities repeat-
edly occur in various snapshots, these entity pairs can be assumed to
have stronger connections. Such pairs can then serve as high-quality
positive samples. Conversely, entity pairs that had relationships that
subsequently disappeared can serve as negative samples. With these
high-quality positive and negative samples, the model’s performance
can potentially be improved under unsupervised conditions.

Multilingual Entity Linking. Despite language differences, re-
lationships may share similarities, allowing for multilingual entity
linking. While existing methods like [15] concentrate on multilin-
gual aligned embedding and community detection in graphs, there
is limited research addressing the issue of temporal degradation in
multilingual contexts. Our work is currently limited to English, with
low-resource datasets not covered. If multilingual entity descriptions
and entity relationships exist at time t1, the model could benefit from
these diverse language resources, thereby further improving the ac-
curacy at time t2 and better preventing temporal degradation.
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